Line 9: Line 9:
 
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.}
 
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.}
 
</math></span></font>
 
</math></span></font>
 
  
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
<font face="Times New Roman" font size="5"><math>
+
<font face="serif"><span style="font-size: 19px;"><math>
 
\mathbf{X}(t) \text{ is SSS if } F_{(t_1+\tau)...(t_n+\tau)}(x_1,...,x_n) \text{ does not depend on } \tau. \text{ To show that, we can show that } \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n)  \text{ does not depend on } \tau:
 
\mathbf{X}(t) \text{ is SSS if } F_{(t_1+\tau)...(t_n+\tau)}(x_1,...,x_n) \text{ does not depend on } \tau. \text{ To show that, we can show that } \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n)  \text{ does not depend on } \tau:
</math></font>
+
</math></span></font>
  
  
Line 33: Line 32:
  
  
<font face="Times New Roman" font size="5"><math>
+
<font face="serif"><span style="font-size: 19px;"><math>
\text{Since } Y(t) \text{ is Gaussian, it is characterized just by its mean and variance. So, we just need to show that mean and variance of } Y(t) \text{do not depend on } \tau. \text{Since } Y(t) \text{ is  WSS, its mean is constant and does not depend on . For variance}  
+
\text{Since } Y(t) \text{ is Gaussian, it is characterized just by its mean and variance. So, we just need to show that mean and variance of } Y(t) \text{ do not depend on } \tau. \text{ Since } Y(t) \text{ is  WSS, its mean is constant and does not depend on . For variance}  
</math></font>
+
</math></span></font>
  
  
Line 54: Line 53:
  
  
<font face="Times New Roman" font size="5"><math>
+
<font face="serif"><span style="font-size: 19px;"><math>
 
\text{Which does not depend on } \tau.
 
\text{Which does not depend on } \tau.
</math></font>
+
</math></span></font>
  
  

Revision as of 13:02, 1 August 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 2

Part 1,2]

 $ \color{blue}\text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.} $

$ \color{blue}\text{Solution 1:} $

$ \mathbf{X}(t) \text{ is SSS if } F_{(t_1+\tau)...(t_n+\tau)}(x_1,...,x_n) \text{ does not depend on } \tau. \text{ To show that, we can show that } \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) \text{ does not depend on } \tau: $


          $ \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{i\sum_{j=1}^{n}{\omega_jX(t_j+\tau)}} \right ] $


$ \text{Define } Y(t_j+\tau) = \sum_{j=1}^{n}{\omega_jX(t_j+\tau)} \text{, so} $


          $ \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{Y(t_j+\tau)} \right ] = \Phi_{(t_1+\tau)...(t_n+\tau)}(1) $


$ \text{Since } Y(t) \text{ is Gaussian, it is characterized just by its mean and variance. So, we just need to show that mean and variance of } Y(t) \text{ do not depend on } \tau. \text{ Since } Y(t) \text{ is WSS, its mean is constant and does not depend on . For variance} $


          $ var(Y(t_j+\tau)) = E \left [(\sum_{j=1}^{n}{w_j(X(t_j+\tau)-\mu)^2} \right ] $


          $ =\sum_{j=1}^{n}{\omega_j^2E \left [ (X(t_j+\tau)-\mu)^2 \right ]} + \sum_{i,j=1}^{n}{\omega_i \omega_j E \left[ (X(t_i+\tau)-\mu)(X(t_j+\tau)-\mu) \right]} $


          $ =\sum_{i,j=1}^{n}{\omega_j^2 cov(t_j,t_j)} + \sum_{i,j=1}^{n}{\omega_i \omega_j cov(t_j,t_j)} $


$ \text{Which does not depend on } \tau. $



$ \color{blue}\text{Solution 2:} $

$ \text{Suppose } \mathbf{X}(t) \text{ is a Gaussian Random Process} $


$ \Rightarrow f(x(t_1),x(t_2),...,x(t_k)) = \frac{1}{2\pi^{(\frac{k}{2})} |\Sigma |^{\frac{1}{2}}} exp(-\frac{1}{2}(\overrightarrow{x} - \overrightarrow{m})^T \Sigma ^{-1}(\overrightarrow{x} - \overrightarrow{m})) $


$ \text{for any number of time instances.} $


$ \text{If } \mathbf{X}(t) \text{is WSS} $


$ \Rightarrow \text{ (1) } m_X(t_1) = m_X(t_2) = ... = m_X(t_K) = m $


$ \text{ (2) } R_X(t_i,t_i) = R_X(t_i + \tau, t_j + \tau) $


$ \Sigma = \begin{bmatrix} &R_X(t_1,t_1) &... &R_X(t_1,t_k)\\ &\vdots & \\ &R_X(t_k,t_1) &... &R_X(t_k,t_k)\\ \end{bmatrix} $


$ \text{From (1): } \overrightarrow{m}' = (m_X(t_1+\tau) , m_X(t_2+\tau) , ... , m_X(t_K+\tau)) = \overrightarrow{m} $


$ \text{From (2): } \Sigma' = \begin{bmatrix} &R_X(t_1,t_1) &... &R_X(t_1,t_k)\\ &\vdots & \\ &R_X(t_k,t_1) &... &R_X(t_k,t_k)\\ \end{bmatrix} = \Sigma $


$ \text{So } f(x(t_1+\tau),x(t_2+\tau),...,x(t_k+\tau)) \text{ is not related to } \tau. $


$ f(x(t_1+\tau),x(t_2+\tau),...,x(t_k+\tau)) $


$ = f(x(t_1),x(t_2),...,x(t_k)) $


$ \Rightarrow \mathbf{X}(t) \text{ is Strict Sense Stationary. } $


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang