Revision as of 20:24, 2 August 2012 by Sandy (Talk | contribs)

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 1

Part 1,2]

 $ \color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) $

$ \color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z). $

$ \color{blue}\text{Solution 1:} $

$ f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx $


$ =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $


$ \text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{, looks like the Gaussian pdf, so} $

$ \color{green}\text{It should be added: Based on the Axioms of Probability, this integral over R will be 1.} $

$ \color{green}\text{So we can then replace this integral with one.} $


$ =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} \underset{{\color{Orange}\sqrt[]{2\pi}z}} {\underbrace{ {\color{Orange} \frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z} } \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $


$ =\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $



$ \color{blue}\text{Solution 2:} $

$ f_{YZ}(y,z) = \int_{-\infty}^{\infty}{f_{XYZ}(x,y,z)dx} $


$ = \int_{-\infty}^{\infty}{\frac{3z^2}{7\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} \frac{(x-y)^2}{z^2}} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) dx} $


$ = \int_{-\infty}^{\infty}{\frac{1}{7\sqrt[]{2\pi}z} e^{-\frac{(x-y)^2}{2z^2}} \cdot \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) dx} \color{green}\text{ Here the student wants to form a Gaussian pdf.} $


$ \color{green}\text{Based on the Axioms of Probability, this integral over R will be 1.} $

$ \color{green}\text{So he wants to replace this integral with 1:} $

$ = \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) $

$ {\color{red}\text{Here, the student forgot to discard one } z. } $

$ {\color{red}\text{The correct answer is:} } $

$ {\color{red}=\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) } $



$ \color{blue}\left( \text{b} \right) \text{Find } f_{x}\left( x|y,z\right ) $

$ \color{blue}\text{Solution 1:} $

$ \color{green}\text{It should be added: According to the Bayes rule:} $

$ f_X(x|y,z) = \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )} $

$ = \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z} $  


$ \color{blue}\text{Solution 2:} $

$ f_X(x|y,z) = \frac{f_{XYZ}(x,y,z)}{f_{YZ}(y,z)} = \frac{\frac{3z^2}{7\sqrt[]{2\pi}} e^{-zy} \cdot e^{- \frac{(x-y)^2}{2z^2}} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)} {\frac{3}{7} z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)} $


$ \frac{1}{\sqrt[]{2\pi}z} e^{- \frac{(x-y)^2}{2z^2}} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) $

$ {\color{red}\text{Here, the student forgot to discard } cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) } $

$ {\color{red}\text{Correct answer: } \frac{1}{\sqrt[]{2\pi}z} e^{- \frac{(x-y)^2}{2z^2}} } $


$ \color{blue}\left( \text{c} \right) \text{Find } f_{Z}\left( z\right ) $

$ \color{blue}\text{Solution 1:} $

$ f_Z(z) = \int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy} $

$ =\frac{3z^{2}}{7}\cdot1_{\left[1,2 \right ]}(z) $  


$ \color{blue}\text{Solution 2:} $

$ f_Z(z) = \int_{-\infty}^{\infty}{f_{YZ}(y,z)dy} $


$ = \int_{0}^{\infty}{\frac{3z^3}{7} e^{-zy} \cdot 1_{[1,2]}(z) dy} $


$ = \frac{3z^2}{7} \cdot \int_{0}^{\infty} z e^{-zy} dy \cdot 1_{[1,2]}(z) $


$ = -\frac{3z^2}{7} \cdot e^{-zy} |_{0}^{\infty} \cdot 1_{[1,2]}(z) $


$ = \frac{3}{7} z^2 \cdot 1_{[1,2]}(z) $



$ \color{blue}\left( \text{d} \right) \text{Find } f_{Y}\left(y|z \right ) $

$ \color{blue}\text{Solution 1:} $

$ f_Y(y|z) = \frac{f_{YZ}\left(y,z \right )}{f_{Z}(z)} $

$ =e^{-zy}z\cdot1_{\left[0,\infty \right )}(y) $  


$ \color{blue}\text{Solution 2:} $

$ f_Y(y|z) = \frac{f_{YZ}(y,z)}{f_Z(z)} = \frac{\frac{3}{7} z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)}{\frac{3}{7} z^2 \cdot 1_{[1,2]}(z)} $


$ = ze^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) $


$ {\color{red}\text{Here, the student forgot to discard } \cdot 1_{[1,2]}(z) } $

$ {\color{red}\text{Correct answer: } = ze^{-zy} \cdot 1_{[0,\infty)}(y) } $


$ \color{blue}\left( \text{e} \right) \text{Find } f_{XY}\left(x,y|z \right ) $

$ \color{blue}\text{Solution 1:} $

$ f_{XY}(x,y|z) = \frac{f_{XYZ}\left(x,y,z \right )}{f_{Z}(z)} $

$ =\frac{e^{-zy}}{\sqrt[]{2\pi}}e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}\cdot1_{\left[0,\infty \right )}(y) $  


$ \color{blue}\text{Solution 2:} $

$ f_{XY}(x,y|z) = \frac{f_{XYZ}(x,y,z)}{f_Z(z)} $


$ = \frac{\frac{3z^2}{7\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} (\frac{x-y}{z})^2} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)}{\frac{3}{7} z^2 \cdot 1_{[1,2]}(z)} $


$ = \frac{1}{\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} (\frac{x-y}{z})^2} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) $


$ {\color{red}\text{Here, the student forgot to discard } \cdot 1_{[1,2]}(z) } $

$ {\color{red}\text{Correct answer: } = \frac{1}{\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} (\frac{x-y}{z})^2} \cdot 1_{[0,\infty)}(y) } $


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang