Line 45: Line 45:
 
<math>
 
<math>
 
= \int_{-\infty}^{\infty}{\frac{1}{7\sqrt[]{2\pi}z} e^{-\frac{(x-y)^2}{2z^2}} \cdot \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) dx}
 
= \int_{-\infty}^{\infty}{\frac{1}{7\sqrt[]{2\pi}z} e^{-\frac{(x-y)^2}{2z^2}} \cdot \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) dx}
 +
</math>
 +
 +
 +
<math>
 +
= \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)
 
</math>
 
</math>
  

Revision as of 20:18, 29 July 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 1

Part 1,2]

 $ \color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) $

$ \color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z). $

$ \color{blue}\text{Solution 1:} $

$ f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx $ 

         $ =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $

$ \text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{looks like the Gaussian pdf, so} $

$ =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} \underset{\sqrt[]{2\pi}z}{\underbrace{\frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z} \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $

$ =\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $


$ \color{blue}\text{Solution 2:} $

$ f_{YZ}(y,z) = \int_{-\infty}{\infty}{f_{XYZ}(x,y,z)dx} $

$ = \int_{-\infty}^{\infty}{\frac{3z^2}{7\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} \frac{(x-y)^2}{z^2}} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) dx} $


$ = \int_{-\infty}^{\infty}{\frac{1}{7\sqrt[]{2\pi}z} e^{-\frac{(x-y)^2}{2z^2}} \cdot \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) dx} $


$ = \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) $


$ \color{blue}\left( \text{b} \right) \text{Find} f_{x}\left( x|y,z\right ) $

$ \color{blue}\text{Solution 1:} $

$ = \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )} $

$ = \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z} $  


$ \color{blue}\text{Solution 2:} $

sol2 here


$ \color{blue}\left( \text{c} \right) \text{Find} f_{Z}\left( z\right ) $

$ \color{blue}\text{Solution 1:} $

$ =\int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy} $

$ =\frac{3z^{2}}{7}\cdot1_{\left[1,2 \right ]}(z) $  


$ \color{blue}\text{Solution 2:} $

sol2 here


$ \color{blue}\left( \text{d} \right) \text{Find} f_{Y}\left(y|z \right ) $

$ \color{blue}\text{Solution 1:} $

$ =\frac{f_{YZ}\left(y,z \right )}{f_{Z}(z)} $

$ =e^{-zy}z\cdot1_{\left[0,\infty \right )}(y) $  


$ \color{blue}\text{Solution 2:} $

sol2 here


$ \color{blue}\left( \text{e} \right) \text{Find} f_{XY}\left(x,y|z \right ) $

$ \color{blue}\text{Solution 1:} $

$ =\frac{f_{XYZ}\left(x,y,z \right )}{f_{Z}(z)} $

$ =\frac{e^{-zy}}{\sqrt[]{2\pi}}e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}\cdot1_{\left[0,\infty \right )}(y) $  


$ \color{blue}\text{Solution 2:} $

sol2 here


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang