(17 intermediate revisions by one other user not shown)
Line 1: Line 1:
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Communication, Networks, Signal, and Image Processing" (CS)  =
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:random variables]]
 +
[[Category:probability]]
  
= [[ECE-QE_CS1-2011|Question 1, August 2011]], Part 1 =
+
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
  
:[[ECE-QE_CS1-2011_solusion-1|Part 1]],[[ECE-QE CS1-2011 solusion-2|2]]]
+
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
  
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 +
August 2011
 +
</center>
 +
----
 +
----
 +
=Part 1 =
 +
Jump to [[ECE-QE_CS1-2011_solusion-1|Part 1]],[[ECE-QE CS1-2011 solusion-2|2]]
 
----
 
----
  
Line 13: Line 31:
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
  
<math> f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx </math>&nbsp;
+
<math> f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx </math>
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)}
+
 
 +
<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)}
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )</math><br>
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )</math><br>
  
<math>\text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{looks like the Gaussian pdf, so} </math>  
+
 
 +
<math>\text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{, looks like the Gaussian pdf, so} </math>  
 +
 
 +
<math>
 +
\color{green}\text{It should be added: Based on the Axioms of Probability, this integral over R will be 1.}
 +
</math>
 +
 
 +
<math>
 +
\color{green}\text{So we can then replace this integral with one.}
 +
</math>
 +
 
  
 
<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}
 
<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}
\underset{\sqrt[]{2\pi}z}{\underbrace{\frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z} \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)}
+
\underset{{\color{Orange}\sqrt[]{2\pi}z}} {\underbrace{ {\color{Orange} \frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z} } \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)}
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
 
</math>
 
</math>
 +
  
 
<math>
 
<math>
Line 29: Line 59:
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
 
</math>
 
</math>
 +
  
 
----
 
----
Line 35: Line 66:
  
 
<math>
 
<math>
f_{YZ}(y,z) = \int_{-\infty}{\infty}{f_{XYZ}(x,y,z)dx}
+
f_{YZ}(y,z) = \int_{-\infty}^{\infty}{f_{XYZ}(x,y,z)dx}
 
</math>
 
</math>
 +
  
 
<math>
 
<math>
Line 44: Line 76:
  
 
<math>
 
<math>
= \int_{-\infty}^{\infty}{\frac{1}{7\sqrt[]{2\pi}z} e^{-\frac{(x-y)^2}{2z^2}} \cdot \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) dx}
+
= \int_{-\infty}^{\infty}{\frac{1}{7\sqrt[]{2\pi}z} e^{-\frac{(x-y)^2}{2z^2}} \cdot \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) dx} \color{green}\text{ Here the student wants to form a Gaussian pdf.}  
 
</math>
 
</math>
  
 +
 +
<math>
 +
\color{green}\text{Based on the Axioms of Probability, this integral over R will be 1.}
 +
</math>
 +
 +
<math>
 +
\color{green}\text{So he wants to replace this integral with 1:}
 +
</math>
  
 
<math>
 
<math>
 
= \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)
 
= \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)
 
</math>
 
</math>
 +
 +
<math>
 +
{\color{red}\text{Here, the student forgot to discard  one } z.
 +
}</math>
 +
 +
<math>
 +
{\color{red}\text{The correct answer is:} 
 +
}</math>
 +
 +
<math>
 +
{\color{red}=\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)}
 +
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) 
 +
}</math>
 +
  
 
----
 
----
  
<math>\color{blue}\left( \text{b} \right) \text{Find}  
+
<math>\color{blue}\left( \text{b} \right) \text{Find }  
 
f_{x}\left( x|y,z\right )
 
f_{x}\left( x|y,z\right )
 
</math><br>  
 
</math><br>  
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
 +
 +
<math>
 +
\color{green}\text{It should be added: According to the Bayes rule:}
 +
</math>
  
 
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
 
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
= \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )}
+
f_X(x|y,z) = \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )}
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</span></font>  
 
</span></font>  
Line 73: Line 131:
 
<math>\color{blue}\text{Solution 2:}</math><br>  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
  
sol2 here
+
<math>
 +
f_X(x|y,z) = \frac{f_{XYZ}(x,y,z)}{f_{YZ}(y,z)} =  \frac{\frac{3z^2}{7\sqrt[]{2\pi}} e^{-zy} \cdot e^{- \frac{(x-y)^2}{2z^2}} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)} {\frac{3}{7} z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)}
 +
</math>
 +
 
 +
 
 +
<math>
 +
\frac{1}{\sqrt[]{2\pi}z} e^{- \frac{(x-y)^2}{2z^2}} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)
 +
</math>
 +
 
 +
<math>
 +
{\color{red}\text{Here, the student forgot to discard  } cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)
 +
}</math>
 +
 
 +
<math>
 +
{\color{red}\text{Correct answer: } \frac{1}{\sqrt[]{2\pi}z} e^{- \frac{(x-y)^2}{2z^2}}
 +
}</math>
 +
 
 
----
 
----
  
<math>\color{blue}\left( \text{c} \right) \text{Find}  
+
<math>\color{blue}\left( \text{c} \right) \text{Find }  
 
f_{Z}\left( z\right )
 
f_{Z}\left( z\right )
 
</math><br>  
 
</math><br>  
Line 83: Line 157:
  
 
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
 
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
=\int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy}
+
f_Z(z) = \int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy}
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</span></font>  
 
</span></font>  
Line 95: Line 169:
 
<math>\color{blue}\text{Solution 2:}</math><br>  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
  
sol2 here
+
<math>
 +
f_Z(z) = \int_{-\infty}^{\infty}{f_{YZ}(y,z)dy}
 +
</math>
 +
 
 +
 
 +
<math>
 +
= \int_{0}^{\infty}{\frac{3z^3}{7} e^{-zy} \cdot 1_{[1,2]}(z) dy}
 +
</math>
 +
 
 +
 
 +
<math>
 +
= \frac{3z^2}{7} \cdot \int_{0}^{\infty} z e^{-zy} dy \cdot 1_{[1,2]}(z)
 +
</math>
 +
 
 +
 
 +
<math>
 +
= -\frac{3z^2}{7} \cdot e^{-zy} |_{0}^{\infty} \cdot 1_{[1,2]}(z)
 +
</math>
 +
 
 +
 
 +
<math>
 +
= \frac{3}{7} z^2 \cdot 1_{[1,2]}(z)
 +
</math>
 +
 
 +
 
 
----
 
----
  
<math>\color{blue}\left( \text{d} \right) \text{Find}  
+
<math>\color{blue}\left( \text{d} \right) \text{Find }  
 
f_{Y}\left(y|z \right )
 
f_{Y}\left(y|z \right )
 
</math><br>  
 
</math><br>  
Line 105: Line 203:
  
 
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
 
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
=\frac{f_{YZ}\left(y,z \right )}{f_{Z}(z)}</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
f_Y(y|z) = \frac{f_{YZ}\left(y,z \right )}{f_{Z}(z)}</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</span></font>  
 
</span></font>  
  
Line 116: Line 214:
 
<math>\color{blue}\text{Solution 2:}</math><br>  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
  
sol2 here
+
<math>
 +
f_Y(y|z) = \frac{f_{YZ}(y,z)}{f_Z(z)} = \frac{\frac{3}{7} z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)}{\frac{3}{7} z^2 \cdot 1_{[1,2]}(z)}
 +
</math>
 +
 
 +
 
 +
<math>
 +
= ze^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)
 +
</math>
 +
 
 +
 
 +
<math>
 +
{\color{red}\text{Here, the student forgot to discard  } \cdot 1_{[1,2]}(z)
 +
}</math>
 +
 
 +
<math>
 +
{\color{red}\text{Correct answer: } = ze^{-zy} \cdot 1_{[0,\infty)}(y)
 +
}</math>
 +
 
 
----
 
----
<math>\color{blue}\left( \text{e} \right) \text{Find}  
+
<math>\color{blue}\left( \text{e} \right) \text{Find }  
 
f_{XY}\left(x,y|z \right )
 
f_{XY}\left(x,y|z \right )
 
</math><br>  
 
</math><br>  
Line 125: Line 240:
  
 
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
 
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
=\frac{f_{XYZ}\left(x,y,z \right )}{f_{Z}(z)}
+
f_{XY}(x,y|z) = \frac{f_{XYZ}\left(x,y,z \right )}{f_{Z}(z)}
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</span></font>  
 
</span></font>  
Line 137: Line 252:
 
<math>\color{blue}\text{Solution 2:}</math><br>  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
  
sol2 here
+
<math>
 +
f_{XY}(x,y|z) = \frac{f_{XYZ}(x,y,z)}{f_Z(z)}
 +
</math>
 +
 
 +
 
 +
<math>
 +
= \frac{\frac{3z^2}{7\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} (\frac{x-y}{z})^2} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)}{\frac{3}{7} z^2 \cdot 1_{[1,2]}(z)}
 +
</math>
 +
 
 +
 
 +
<math>
 +
= \frac{1}{\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} (\frac{x-y}{z})^2} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)
 +
</math>
 +
 
 +
 
 +
<math>
 +
{\color{red}\text{Here, the student forgot to discard  } \cdot 1_{[1,2]}(z)
 +
}</math>
 +
 
 +
<math>
 +
{\color{red}\text{Correct answer: } = \frac{1}{\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} (\frac{x-y}{z})^2} \cdot 1_{[0,\infty)}(y)
 +
}</math>
 
----
 
----
  
Line 149: Line 285:
 
----
 
----
  
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
+
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
 
+
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+

Latest revision as of 10:29, 13 September 2013


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2011



Part 1

Jump to Part 1,2


 $ \color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) $

$ \color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z). $

$ \color{blue}\text{Solution 1:} $

$ f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx $


$ =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $


$ \text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{, looks like the Gaussian pdf, so} $

$ \color{green}\text{It should be added: Based on the Axioms of Probability, this integral over R will be 1.} $

$ \color{green}\text{So we can then replace this integral with one.} $


$ =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} \underset{{\color{Orange}\sqrt[]{2\pi}z}} {\underbrace{ {\color{Orange} \frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z} } \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $


$ =\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $



$ \color{blue}\text{Solution 2:} $

$ f_{YZ}(y,z) = \int_{-\infty}^{\infty}{f_{XYZ}(x,y,z)dx} $


$ = \int_{-\infty}^{\infty}{\frac{3z^2}{7\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} \frac{(x-y)^2}{z^2}} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) dx} $


$ = \int_{-\infty}^{\infty}{\frac{1}{7\sqrt[]{2\pi}z} e^{-\frac{(x-y)^2}{2z^2}} \cdot \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) dx} \color{green}\text{ Here the student wants to form a Gaussian pdf.} $


$ \color{green}\text{Based on the Axioms of Probability, this integral over R will be 1.} $

$ \color{green}\text{So he wants to replace this integral with 1:} $

$ = \frac{3}{7}z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) $

$ {\color{red}\text{Here, the student forgot to discard one } z. } $

$ {\color{red}\text{The correct answer is:} } $

$ {\color{red}=\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) } $



$ \color{blue}\left( \text{b} \right) \text{Find } f_{x}\left( x|y,z\right ) $

$ \color{blue}\text{Solution 1:} $

$ \color{green}\text{It should be added: According to the Bayes rule:} $

$ f_X(x|y,z) = \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )} $

$ = \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z} $  


$ \color{blue}\text{Solution 2:} $

$ f_X(x|y,z) = \frac{f_{XYZ}(x,y,z)}{f_{YZ}(y,z)} = \frac{\frac{3z^2}{7\sqrt[]{2\pi}} e^{-zy} \cdot e^{- \frac{(x-y)^2}{2z^2}} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)} {\frac{3}{7} z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)} $


$ \frac{1}{\sqrt[]{2\pi}z} e^{- \frac{(x-y)^2}{2z^2}} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) $

$ {\color{red}\text{Here, the student forgot to discard } cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) } $

$ {\color{red}\text{Correct answer: } \frac{1}{\sqrt[]{2\pi}z} e^{- \frac{(x-y)^2}{2z^2}} } $


$ \color{blue}\left( \text{c} \right) \text{Find } f_{Z}\left( z\right ) $

$ \color{blue}\text{Solution 1:} $

$ f_Z(z) = \int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy} $

$ =\frac{3z^{2}}{7}\cdot1_{\left[1,2 \right ]}(z) $  


$ \color{blue}\text{Solution 2:} $

$ f_Z(z) = \int_{-\infty}^{\infty}{f_{YZ}(y,z)dy} $


$ = \int_{0}^{\infty}{\frac{3z^3}{7} e^{-zy} \cdot 1_{[1,2]}(z) dy} $


$ = \frac{3z^2}{7} \cdot \int_{0}^{\infty} z e^{-zy} dy \cdot 1_{[1,2]}(z) $


$ = -\frac{3z^2}{7} \cdot e^{-zy} |_{0}^{\infty} \cdot 1_{[1,2]}(z) $


$ = \frac{3}{7} z^2 \cdot 1_{[1,2]}(z) $



$ \color{blue}\left( \text{d} \right) \text{Find } f_{Y}\left(y|z \right ) $

$ \color{blue}\text{Solution 1:} $

$ f_Y(y|z) = \frac{f_{YZ}\left(y,z \right )}{f_{Z}(z)} $

$ =e^{-zy}z\cdot1_{\left[0,\infty \right )}(y) $  


$ \color{blue}\text{Solution 2:} $

$ f_Y(y|z) = \frac{f_{YZ}(y,z)}{f_Z(z)} = \frac{\frac{3}{7} z^3 e^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)}{\frac{3}{7} z^2 \cdot 1_{[1,2]}(z)} $


$ = ze^{-zy} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) $


$ {\color{red}\text{Here, the student forgot to discard } \cdot 1_{[1,2]}(z) } $

$ {\color{red}\text{Correct answer: } = ze^{-zy} \cdot 1_{[0,\infty)}(y) } $


$ \color{blue}\left( \text{e} \right) \text{Find } f_{XY}\left(x,y|z \right ) $

$ \color{blue}\text{Solution 1:} $

$ f_{XY}(x,y|z) = \frac{f_{XYZ}\left(x,y,z \right )}{f_{Z}(z)} $

$ =\frac{e^{-zy}}{\sqrt[]{2\pi}}e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}\cdot1_{\left[0,\infty \right )}(y) $  


$ \color{blue}\text{Solution 2:} $

$ f_{XY}(x,y|z) = \frac{f_{XYZ}(x,y,z)}{f_Z(z)} $


$ = \frac{\frac{3z^2}{7\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} (\frac{x-y}{z})^2} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z)}{\frac{3}{7} z^2 \cdot 1_{[1,2]}(z)} $


$ = \frac{1}{\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} (\frac{x-y}{z})^2} \cdot 1_{[0,\infty)}(y) \cdot 1_{[1,2]}(z) $


$ {\color{red}\text{Here, the student forgot to discard } \cdot 1_{[1,2]}(z) } $

$ {\color{red}\text{Correct answer: } = \frac{1}{\sqrt[]{2\pi}} e^{-zy} \cdot e^{-\frac{1}{2} (\frac{x-y}{z})^2} \cdot 1_{[0,\infty)}(y) } $


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang