Line 17: Line 17:
 
<math>\color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?}</math>  
 
<math>\color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?}</math>  
  
<math>\color{blue}\text{Solution 1:}</math>  
+
<math>\color{blue}\text{Solution 1:}</math>
 +
 
 +
<math>f\left( x \right) = \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math>
 +
 
 +
<math>g_{1}\left( x \right) x_{1}^{2}-x_{2}\leq0</math>
 +
 
 +
<math>g_{2}\left( x \right) x_{1}+x_{2}-2\leq0</math>
 +
 
 +
<math>g_{3}\left( x \right) -x_{1}\leq0</math>
 +
 
 +
The problem is to optimize f(x)
 +
 
 +
<math>\text{subject to } g_{1}\leq 0, g_{2}\leq 0, g_{3}\leq 0</math>
 +
 
 +
<math>l\left( \mu ,\lambda \right)=\nabla f\left(x  \right)+\mu_{1} \nabla g_{1}\left( x \right)+\mu_{2} \nabla g_{2}\left( x \right)+\mu_{3} \nabla g_{3}\left( x \right)</math>
 +
 
 +
<math>\end{pmatrix} +\mu_{1} \begin{pmatrix}
 +
2x_{1}\\
 +
-1
 +
\end{pmatrix}+\mu_{2}+\begin{pmatrix}
 +
1\\
 +
1
 +
\end{pmatrix}+\mu_{3}+\begin{pmatrix}
 +
-1\\
 +
0
 +
\end{pmatrix} =0</math>
 +
 
 +
 
 +
 
 +
----
 +
 
 +
<math>\color{blue}\text{Solution 2:}</math>  
  
 
<math>\text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math><br>  
 
<math>\text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math><br>  
Line 33: Line 64:
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\left ( 2 \right ) \mu^{T}g\left ( x \right )=0 \Rightarrow  \mu_{1}\left ( x_{2}^2-x_{2} \right )+\mu_{2}\left ( x_{1}+x_{2}-2 \right ) - \mu_{3}x_{1}=0</math>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\left ( 2 \right ) \mu^{T}g\left ( x \right )=0 \Rightarrow  \mu_{1}\left ( x_{2}^2-x_{2} \right )+\mu_{2}\left ( x_{1}+x_{2}-2 \right ) - \mu_{3}x_{1}=0</math>  
  
<math>\left ( 3 \right ) \mu_{1},\mu_{2},\mu_{3}\geq 0 \text{ for minimizer}</math><br>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\left ( 3 \right ) \mu_{1},\mu_{2},\mu_{3}\geq 0 \text{ for minimizer}</math><br>  
  
<math>\mu_{1},\mu_{2},\mu_{3}\leq 0 \text{ for maximizer}</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\mu_{1},\mu_{2},\mu_{3}\leq 0 \text{ for maximizer}</math>  
  
<math>\text{where } \mu^{*}=\begin{bmatrix}
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\text{where } \mu^{*}=\begin{bmatrix}
 
\mu_{1}\\  
 
\mu_{1}\\  
 
\mu_{2}\\  
 
\mu_{2}\\  
 
\mu_{3}
 
\mu_{3}
\end{bmatrix} \text{ are the KKT multiplier.}</math>
+
\end{bmatrix} \text{ are the KKT multiplier.}</math>  
  
 
<math>\text{For } x^{*}=\begin{bmatrix}
 
<math>\text{For } x^{*}=\begin{bmatrix}
 
0\\  
 
0\\  
 
0
 
0
\end{bmatrix} \text{, }</math>&nbsp; &nbsp;&nbsp;
+
\end{bmatrix} \text{, }</math>&nbsp; &nbsp; &nbsp; &nbsp;<math>\left\{\begin{matrix}
 
+
<math>\left\{\begin{matrix}
+
 
\nabla l\left( x,\mu \right)=\begin{pmatrix}
 
\nabla l\left( x,\mu \right)=\begin{pmatrix}
 
-4+\mu_{2}-\mu_{3}\\  
 
-4+\mu_{2}-\mu_{3}\\  
Line 58: Line 87:
 
\mu_{2}=0\\  
 
\mu_{2}=0\\  
 
\mu_{3}=-4
 
\mu_{3}=-4
\end{matrix}\right.</math>
+
\end{matrix}\right.</math>  
  
<math>\therefore x^{*}=\begin{bmatrix}
+
<math>\therefore x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ satisfy FONC for maximum}</math><font color="#aaaaaa"><br></font>  
0\\0  
+
\end{bmatrix} \text{ satisfy FONC for maximum}</math><math>\therefore x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ satisfy FONC for maximum}</math>
+
  
----
 
 
<math>\color{blue}\text{Solution 2:}</math>
 
  
<br>
 
  
 
----
 
----

Revision as of 21:28, 27 June 2012


ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011

 $ \color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $

                            $ \text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

                        $ \text{subject to } x_{2}- x_{1}^{2}\geq0 $

                                                 $ 2-x_{1}-x_{2}\geq0, x_{1}\geq0. $

$ \color{blue} \text{The point } x^{*}=\begin{bmatrix} 0 & 0 \end{bmatrix}^{T} \text{ satisfies the KKT conditions.} $

$ \color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?} $

$ \color{blue}\text{Solution 1:} $

$ f\left( x \right) = \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

$ g_{1}\left( x \right) x_{1}^{2}-x_{2}\leq0 $

$ g_{2}\left( x \right) x_{1}+x_{2}-2\leq0 $

$ g_{3}\left( x \right) -x_{1}\leq0 $

The problem is to optimize f(x)

$ \text{subject to } g_{1}\leq 0, g_{2}\leq 0, g_{3}\leq 0 $

$ l\left( \mu ,\lambda \right)=\nabla f\left(x \right)+\mu_{1} \nabla g_{1}\left( x \right)+\mu_{2} \nabla g_{2}\left( x \right)+\mu_{3} \nabla g_{3}\left( x \right) $

$ \end{pmatrix} +\mu_{1} \begin{pmatrix} 2x_{1}\\ -1 \end{pmatrix}+\mu_{2}+\begin{pmatrix} 1\\ 1 \end{pmatrix}+\mu_{3}+\begin{pmatrix} -1\\ 0 \end{pmatrix} =0 $



$ \color{blue}\text{Solution 2:} $

$ \text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

                                  $ \text{subject to } g_{1}\left( x \right) x_{1}^{2}-x_{2}\leq0 $

                                                           $ g_{2}\left( x \right) x_{1}+x_{2}-2\leq0 $

                                                           $ g_{3}\left( x \right) -x_{1}\leq0 $

$ \text{KKT condition: (1) } Dl\left( \mu ,\lambda \right)=Df\left(x \right)+\mu_{1}Dg_{1}\left( x \right)+\mu_{2}Dg_{2}\left( x \right)+\mu_{3}Dg_{3}\left( x \right) $

                                                                      $ =\left [ 2x_{1}-4+2\mu_{1}x_{1}+\mu_{2}-\mu_{3}, 2x_{2}-2-\mu_{1}+\mu_{2} \right ] $

                                        $ \left ( 2 \right ) \mu^{T}g\left ( x \right )=0 \Rightarrow \mu_{1}\left ( x_{2}^2-x_{2} \right )+\mu_{2}\left ( x_{1}+x_{2}-2 \right ) - \mu_{3}x_{1}=0 $

                                        $ \left ( 3 \right ) \mu_{1},\mu_{2},\mu_{3}\geq 0 \text{ for minimizer} $

                                               $ \mu_{1},\mu_{2},\mu_{3}\leq 0 \text{ for maximizer} $

                                        $ \text{where } \mu^{*}=\begin{bmatrix} \mu_{1}\\ \mu_{2}\\ \mu_{3} \end{bmatrix} \text{ are the KKT multiplier.} $

$ \text{For } x^{*}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{, } $       $ \left\{\begin{matrix} \nabla l\left( x,\mu \right)=\begin{pmatrix} -4+\mu_{2}-\mu_{3}\\ -2-\mu_{1}-\mu_{2} \end{pmatrix}=\binom{0}{0} \\ -2\mu_{2}=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_{1}=-2\\ \mu_{2}=0\\ \mu_{3}=-4 \end{matrix}\right. $

$ \therefore x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ satisfy FONC for maximum} $



Automatic Control (AC)- Question 3, August 2011
Problem 1:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion
Problem 2:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2
Problem 3:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3
Problem 4:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang