Line 9: Line 9:
 
<span class="texhtml">maximize &nbsp; &nbsp;−&nbsp;''x''<sub>1</sub> − 3''x''<sub>2</sub> + 4''x''<sub>3</sub></span><br>  
 
<span class="texhtml">maximize &nbsp; &nbsp;−&nbsp;''x''<sub>1</sub> − 3''x''<sub>2</sub> + 4''x''<sub>3</sub></span><br>  
  
<span class="texhtml"><sub></sub></span>subject to &nbsp;<span class="texhtml">''x''<sub>1</sub> + 2''x''<sub>2</sub> − ''x''<sub>3</sub> = 5</span>  
+
<span class="texhtml"><sub></sub></span>subject to &nbsp;&nbsp;<span class="texhtml">''x''<sub>1</sub> + 2''x''<sub>2</sub> − ''x''<sub>3</sub> = 5</span>  
  
<span class="texhtml">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2''x''<sub>1</sub> + 3''x''<sub>2</sub> − ''x''<sub>3</sub> = 6</span>  
+
<span class="texhtml">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;2''x''<sub>1</sub> + 3''x''<sub>2</sub> − ''x''<sub>3</sub> = 6</span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0.</math>  
  
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
Line 21: Line 21:
 
<math>\Rightarrow x_{2}-x_{3}=4</math>  
 
<math>\Rightarrow x_{2}-x_{3}=4</math>  
  
It is equivalent to &nbsp;&nbsp;<math>min  x_{1}+3x_{2}-4x_{3}
+
It is equivalent to &nbsp;&nbsp;<math>\text{min } x_{1}+3x_{2}-4x_{3}
=5-2x_{2}+x_{3}+3x_{2}-4x_{3} = x_{2}-3x_{3}+5, x_{2}\geq0, x_{3}\leq0</math>
+
=5-2x_{2}+x_{3}+3x_{2}-4x_{3} = x_{2}-3x_{3}+5, x_{2}\geq0, x_{3}\leq0</math>  
  
<math>x_{2}-3x_{3}+5 = x_{2}-x_{3}-2x_{3}+5=9-2x_{3}\geq9</math>
+
<math>x_{2}-3x_{3}+5 = x_{2}-x_{3}-2x_{3}+5=9-2x_{3}\geq9</math>  
  
Equicalently,&nbsp;<math>-x_{1}-3x_{2}+4x_{3}\leq-9</math>
+
Equicalently,&nbsp;<math>-x_{1}-3x_{2}+4x_{3}\leq-9</math>  
  
Equality is satisfied when&nbsp;<math>x_{3}=0, x_{2} =4, x_{1}=5-2\times4=-3</math>
+
Equality is satisfied when&nbsp;<math>x_{3}=0, x_{2} =4, x_{1}=5-2\times4=-3</math>  
  
 
<math>\Rightarrow \left\{\begin{matrix}
 
<math>\Rightarrow \left\{\begin{matrix}
Line 34: Line 34:
 
x_{2}=4\\  
 
x_{2}=4\\  
 
x_{3}=0
 
x_{3}=0
\end{matrix}\right.</math>
+
\end{matrix}\right.</math>
 +
 
 +
----
 +
 
 +
<math>\color{blue}\text{Solution 2:}</math><br> One of the basic feasible solution is an optimal solution.
 +
 
 +
The equality constraints can be represented in the form&nbsp;<math>Ax=b, A= \begin{bmatrix}
 +
a_{1}&
 +
a_{2}&
 +
a_{3}
 +
\end{bmatrix}</math>
 +
 
 +
The fist basis candidate is&nbsp;<math>\begin{pmatrix}
 +
a_{1} &
 +
a_{2}
 +
\end{pmatrix}</math>
 +
 
 +
<math>\left [ A|b \right ] =\begin{bmatrix}
 +
1 & 2 & -1 & 5 \\
 +
2 & 3 & -1 & 6
 +
\end{bmatrix} = \cdots = \begin{bmatrix}
 +
1 & 0 & 1 & -3 \\
 +
0 & 1 & -1 & 4
 +
\end{bmatrix}</math>
 +
 
 +
<math>x^{\left( 1 \right)}= \begin{bmatrix}
 +
-3 & 4 & 0
 +
\end{bmatrix} \text{ is BFS. } f_{1}=-9</math>
 +
 
 +
The second basis candidate is&nbsp;<math>\begin{pmatrix}
 +
a_{2} &
 +
a_{3}
 +
\end{pmatrix}</math>
 +
 
 +
<math>\left [ A|b \right ] =\begin{bmatrix}
 +
1 & 2 & -1 & 5 \\
 +
2 & 3 & -1 & 6
 +
\end{bmatrix} = \cdots = \begin{bmatrix}
 +
1 & 0 & 1 & -3 \\
 +
1 & 1 & 0 & 1
 +
\end{bmatrix}</math>
 +
 
 +
<math>x^{\left( 2 \right)}= \begin{bmatrix}
 +
0 & 1 & -3
 +
\end{bmatrix} \text{ is BFS. } f_{2}=-15</math>
 +
 
 +
The third basis candidate is&nbsp;<math>\begin{pmatrix}
 +
a_{1} &
 +
a_{3}
 +
\end{pmatrix}</math>
 +
 
 +
<math>\left [ A|b \right ] =\begin{bmatrix}
 +
1 & 2 & -1 & 5 \\
 +
2 & 3 & -1 & 6
 +
\end{bmatrix} = \cdots = \begin{bmatrix}
 +
0 & 1 & 1 & 4 \\
 +
1 & 1 & 0 & 1
 +
\end{bmatrix}</math>
 +
 
 +
<math>x^{\left( 2 \right)}= \begin{bmatrix}
 +
1 & 0 & -5
 +
\end{bmatrix} \text{ is BFS. } f_{3}=-21</math>
 +
 
 +
<math>\because f_{1}>f_{2}>f_{3}</math>
 +
 
 +
<math>\therefore \text{The optimal solution is } x^{*}=\begin{bmatrix}
 +
-3 & 4 & 0
 +
\end{bmatrix}  \text{ with objective value } -9</math>
  
  
<br>
 
  
 
----
 
----

Revision as of 14:41, 27 June 2012


ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011


 $ \color{blue}\text{3. } \left( \text{20 pts} \right) \text{ Solve the following linear program, } $

maximize    − x1 − 3x2 + 4x3

subject to   x1 + 2x2x3 = 5

                   2x1 + 3x2x3 = 6

                   $ x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0. $

$ \color{blue}\text{Solution 1:} $

$ \Rightarrow x_{1}=5-2x_{2}+x_{3}=3-\frac{3}{2}x_{2}+\frac{1}{2}x_{3} $

$ \Rightarrow x_{2}-x_{3}=4 $

It is equivalent to   $ \text{min } x_{1}+3x_{2}-4x_{3} =5-2x_{2}+x_{3}+3x_{2}-4x_{3} = x_{2}-3x_{3}+5, x_{2}\geq0, x_{3}\leq0 $

$ x_{2}-3x_{3}+5 = x_{2}-x_{3}-2x_{3}+5=9-2x_{3}\geq9 $

Equicalently, $ -x_{1}-3x_{2}+4x_{3}\leq-9 $

Equality is satisfied when $ x_{3}=0, x_{2} =4, x_{1}=5-2\times4=-3 $

$ \Rightarrow \left\{\begin{matrix} x_{1}=-3\\ x_{2}=4\\ x_{3}=0 \end{matrix}\right. $


$ \color{blue}\text{Solution 2:} $
One of the basic feasible solution is an optimal solution.

The equality constraints can be represented in the form $ Ax=b, A= \begin{bmatrix} a_{1}& a_{2}& a_{3} \end{bmatrix} $

The fist basis candidate is $ \begin{pmatrix} a_{1} & a_{2} \end{pmatrix} $

$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -1 & 4 \end{bmatrix} $

$ x^{\left( 1 \right)}= \begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ is BFS. } f_{1}=-9 $

The second basis candidate is $ \begin{pmatrix} a_{2} & a_{3} \end{pmatrix} $

$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 1 & 1 & 0 & 1 \end{bmatrix} $

$ x^{\left( 2 \right)}= \begin{bmatrix} 0 & 1 & -3 \end{bmatrix} \text{ is BFS. } f_{2}=-15 $

The third basis candidate is $ \begin{pmatrix} a_{1} & a_{3} \end{pmatrix} $

$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 0 & 1 & 1 & 4 \\ 1 & 1 & 0 & 1 \end{bmatrix} $

$ x^{\left( 2 \right)}= \begin{bmatrix} 1 & 0 & -5 \end{bmatrix} \text{ is BFS. } f_{3}=-21 $

$ \because f_{1}>f_{2}>f_{3} $

$ \therefore \text{The optimal solution is } x^{*}=\begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ with objective value } -9 $



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett