Line 37: Line 37:
 
7. Update the canonical augmented matrix by pivoting about the&nbsp;<span class="texhtml">(''p'',''q'')</span>&nbsp;th element.  
 
7. Update the canonical augmented matrix by pivoting about the&nbsp;<span class="texhtml">(''p'',''q'')</span>&nbsp;th element.  
  
8. Go to step 3.<br>
+
8. Go to step 3.
  
 
----
 
----
  
===== <math>\color{blue}\text{Solution 1:}</math> =====
+
<math>\color{blue}\text{Solution 1:}</math>  
  
 
<span class="texhtml">&nbsp; &nbsp;min&nbsp;''&nbsp;&nbsp;'' − ''x''<sub>1</sub> − ''x''<sub>2</sub></span>&nbsp;<br> <span class="texhtml">&nbsp; &nbsp;subject to &nbsp; &nbsp;''x''<sub>1</sub> − ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>&nbsp;<br> <span class="texhtml">''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 6</span>&nbsp;  
 
<span class="texhtml">&nbsp; &nbsp;min&nbsp;''&nbsp;&nbsp;'' − ''x''<sub>1</sub> − ''x''<sub>2</sub></span>&nbsp;<br> <span class="texhtml">&nbsp; &nbsp;subject to &nbsp; &nbsp;''x''<sub>1</sub> − ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>&nbsp;<br> <span class="texhtml">''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 6</span>&nbsp;  
Line 65: Line 65:
 
\end{matrix}</math>  
 
\end{matrix}</math>  
  
<math>\Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6</math><br>  
+
<math>\Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6</math>
  
 
----
 
----
  
===== <math>\color{blue}\text{Solution 2:}</math> =====
+
<math>\color{blue}\text{Solution 2:}</math>  
  
 
<span class="texhtml">Get standard form for simplex method &nbsp; min&nbsp;''&nbsp;&nbsp;'' − ''x''<sub>1</sub> − ''x''<sub>2</sub></span>  
 
<span class="texhtml">Get standard form for simplex method &nbsp; min&nbsp;''&nbsp;&nbsp;'' − ''x''<sub>1</sub> − ''x''<sub>2</sub></span>  
Line 111: Line 111:
 
<math>\color{blue}\text{Related Problem: Solve the following problem using simplex method}</math>  
 
<math>\color{blue}\text{Related Problem: Solve the following problem using simplex method}</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;min &nbsp;<span class="texhtml">2''x''<sub>1</sub> + 3''x''<sub>2</sub></span>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; min &nbsp;<span class="texhtml">2''x''<sub>1</sub> + 3''x''<sub>2</sub></span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; subject to&nbsp;<math>2x_{1}+x_{2}\leq4</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; subject to &nbsp;<math>2x_{1}+x_{2}\leq4</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1}+x_{2}\leq3</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq3</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1},x_{2}\geq0.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},x_{2}\geq0.</math>
  
 
<math>\color{blue}\text{Solution:}</math>  
 
<math>\color{blue}\text{Solution:}</math>  
  
Transform to standard form: &nbsp; min &nbsp;<span class="texhtml"> − 2''x''<sub>1</sub> − 3''x''<sub>2</sub></span>  
+
Transform to standard form: &nbsp;min &nbsp;<span class="texhtml"> − 2''x''<sub>1</sub> − 3''x''<sub>2</sub></span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;subject to &nbsp;<span class="texhtml">2''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub> = 4</span>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;subject to &nbsp;&nbsp;<span class="texhtml">2''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub> = 4</span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<span class="texhtml">''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 3</span>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<span class="texhtml">''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 3</span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{i}\geq0,    i=1,2,3,4</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{i}\geq0,    i=1,2,3,4</math>  
  
<math>\begin{matrix}
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\begin{matrix}
 
  & x_{1} & x_{2} & x_{3} & x_{4} & b\\  
 
  & x_{1} & x_{2} & x_{3} & x_{4} & b\\  
 
  & 2 & 1 & 1 & 0 & 4\\  
 
  & 2 & 1 & 1 & 0 & 4\\  
Line 138: Line 138:
 
We have&nbsp;<span class="texhtml">''r''<sub>1</sub> =  − 2 &lt; 0</span>&nbsp; and &nbsp;<span class="texhtml">''r''<sub>2</sub> =  − 3 &lt; 0</span>. &nbsp;We introduce&nbsp;<span class="texhtml">''a''<sub>2</sub></span>&nbsp;into the new basis and pivot&nbsp;<span class="texhtml">''y''<sub>22</sub></span>, by calculating the ratios&nbsp;<span class="texhtml">''y''<sub>''i''0</sub> / ''y''<sub>''i''2</sub>,''y''<sub>''i''2</sub> &gt; 0</span>.<sub></sub>  
 
We have&nbsp;<span class="texhtml">''r''<sub>1</sub> =  − 2 &lt; 0</span>&nbsp; and &nbsp;<span class="texhtml">''r''<sub>2</sub> =  − 3 &lt; 0</span>. &nbsp;We introduce&nbsp;<span class="texhtml">''a''<sub>2</sub></span>&nbsp;into the new basis and pivot&nbsp;<span class="texhtml">''y''<sub>22</sub></span>, by calculating the ratios&nbsp;<span class="texhtml">''y''<sub>''i''0</sub> / ''y''<sub>''i''2</sub>,''y''<sub>''i''2</sub> &gt; 0</span>.<sub></sub>  
  
<math>\begin{matrix}
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{matrix}
x_{1} & x_{2} & x_{3} & x_{4} & b\\  
+
& x_{1} & x_{2} & x_{3} & x_{4} & b\\  
2 & 1 & 1 & 0 & 4\\  
+
& 2 & 1 & 1 & 0 & 4\\  
1 & 1 & 0 & 1 & 3 \\  
+
& 1 & 1 & 0 & 1 & 3 \\  
1 & 0 & 0 & 3 & 9
+
c^{T} & 1 & 0 & 0 & 3 & 9
 
\end{matrix}</math>  
 
\end{matrix}</math>  
  
 
All the reduced cost coefficients are positive, hence the optimal solution to the problem in standard form is  
 
All the reduced cost coefficients are positive, hence the optimal solution to the problem in standard form is  
  
<math>x^{*}=\begin{bmatrix}
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x^{*}=\begin{bmatrix}
 
0 &  
 
0 &  
 
3 &  
 
3 &  
Line 157: Line 157:
 
0 &  
 
0 &  
 
3
 
3
\end{bmatrix}^{T}.</math>&nbsp;and the optimal objective value is 9.  
+
\end{bmatrix}^{T}.</math>&nbsp;and the optimal objective value is 9.<br>  
 
+
<br>  
+
  
 
----
 
----

Revision as of 20:27, 28 June 2012

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 2, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, } $

               maximize        x1 + x2

               $ \text{subject to } x_{1}-x_{2}\leq2 $
                                        $ x_{1}+x_{2}\leq6 $                                         

                                        $ x_{1},x_{2}\geq0. $


Theorem: 

A basic feasible solution is optimal if and only if the corresponding reduced cost coefficeints are all nonnegative.

Simplex Method:

1. Transform the given problem into standard form by introducing slack variables x3 and x4.

2. Form a canonical augmented matrix corresponding to an initial basic feasible solution.

3. Calculate the reduced cost coefficients corresponding to the nonbasic variables.

4. If $ r_{j}>\geq0 $ for all j, stop. -- the current basic feasible solution is optimal.

5. Select a q such that rq < 0

6. If no yiq > 0, stop. -- the problem is unbounded; else, calculate  $ p=argmin_{i}\left \{ y_{i0}/y_{iq}:y_{iq}>0 \right \} $

7. Update the canonical augmented matrix by pivoting about the (p,q) th element.

8. Go to step 3.


$ \color{blue}\text{Solution 1:} $

   min   x1x2 
   subject to    x1x2 + x3 = 2 
                     x1 + x2 + x4 = 6 

                     $ x_{1},x_{2},x_{3},x_{4}\geq 0 $

$ \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ -1 & -1 & 0 & 0 & 0 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & -2 & 1 & 0 & 2 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6 $


$ \color{blue}\text{Solution 2:} $

Get standard form for simplex method   min   x1x2

                                                           subject to    x1x2 + x3 = 2

                                                                             x1 + x2 + x4 = 6

                                                                             $ x_{i}\geq0, i=1,2,3,4 $

$ \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 1 & -1 & 1 & 0 & 2\\ & 1 & 1 & 0 & 1 & 6 \\ c^{T} & -1 & -1 & 0 & 0 & 0 \end{matrix} $      $ \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \therefore \text{the optimal solution to the original problem is } x^{*}= \begin{bmatrix} 4\\ 2 \end{bmatrix} $

The maximum value for   x1 + x2 is 6.


$ \color{blue}\text{Related Problem: Solve the following problem using simplex method} $

                      min  2x1 + 3x2

            subject to  $ 2x_{1}+x_{2}\leq4 $

                              $ x_{1}+x_{2}\leq3 $

                              $ x_{1},x_{2}\geq0. $

$ \color{blue}\text{Solution:} $

Transform to standard form:  min   − 2x1 − 3x2

                                       subject to   2x1 + x2 + x3 = 4

                                                          x1 + x2 + x4 = 3

                                                          $ x_{i}\geq0, i=1,2,3,4 $

              $ \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 2 & 1 & 1 & 0 & 4\\ & 1 & 1 & 0 & 1 & 3 \\ c^{T} & -2 & -3 & 0 & 0 & 0 \end{matrix} $

We have r1 = − 2 < 0  and  r2 = − 3 < 0.  We introduce a2 into the new basis and pivot y22, by calculating the ratios yi0 / yi2,yi2 > 0.

               $ \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 2 & 1 & 1 & 0 & 4\\ & 1 & 1 & 0 & 1 & 3 \\ c^{T} & 1 & 0 & 0 & 3 & 9 \end{matrix} $

All the reduced cost coefficients are positive, hence the optimal solution to the problem in standard form is

               $ x^{*}=\begin{bmatrix} 0 & 3 & 1 & 0 \end{bmatrix}^{T}. $

The optimal solution to the original problem is $ x^{*}=\begin{bmatrix} 0 & 3 \end{bmatrix}^{T}. $ and the optimal objective value is 9.


Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett