(28 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<br>
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:automatic control]]
 +
[[Category:optimization]]
  
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]]: Automatic Control (AC)- Question 3, August 2011 =
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC) =
 +
 
 +
= [[ECE-QE_AC3-2011|Question 3, August 2011]], Part 1 =
 +
 
 +
:[[ECE-QE_AC3-2011_solusion-1|Part 1]],[[ECE-QE AC3-2011 solusion-2|2]],[[ECE-QE AC3-2011 solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE AC3-2011 solusion-5|5]]
  
 
----
 
----
Line 10: Line 19:
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}\geq0, x_{2}\geq0</math><font color="#ff0000" face="serif" size="4"><br></font>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}\geq0, x_{2}\geq0</math><font color="#ff0000" face="serif" size="4"><br></font>  
 +
 +
----
 +
 +
'''Definition: Feasible Direction'''
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{A vector } d\in\Re^{n}, d\neq0, \text{ is a feasible direction at } x\in\Omega</math><br>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{if there exists } \alpha_{0}>0 \text{ such that } x+\alpha d\in\Omega \text{ for all } \alpha\in\left[ 0,\alpha_{0}\right]</math>
 +
 +
'''FONC:'''
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; If x<span style="font-size: 11px;">*</span>&nbsp;is a local minimizer of f over <span class="texhtml">Ω</span>, then for any feasible direction d at x*, we have&nbsp;<sup></sup><sup></sup>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )\geq0</math>
 +
 +
'''FONC Interior Case:'''
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\nabla f\left ( x^{*} \right )=0</math>
 +
 +
'''SONC:&nbsp;'''
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; Let x* a local minimizer of f and d a feasible direction at x*,
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math>d^{T} \nabla f\left ( x^{*} \right )=0</math>&nbsp;, then &nbsp;<math>d^{T} F\left ( x^{*} \right )d\geq 0</math>
 +
 +
'''SONC Interior Case:&nbsp;'''
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; If&nbsp;<math>\nabla f\left ( x^{*} \right )=0</math>&nbsp; , then&nbsp;<math>d^{T} F\left ( x^{*} \right )d\geq 0</math>
 +
 +
----
  
 
'''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''<br>  
 
'''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''<br>  
Line 15: Line 54:
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
  
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math>  
+
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math>&nbsp;
  
<math>\left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in\Omega \left[0,\alpha_{0}\right]</math><br>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in \left[0,\alpha_{0}\right]</math><br>  
  
 
<math>\text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0.</math>  
 
<math>\text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0.</math>  
Line 25: Line 64:
 
<math>\color{blue}\text{Solution 2:}</math>  
 
<math>\color{blue}\text{Solution 2:}</math>  
  
<math>d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>&nbsp;<br>  
+
<math>d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*}</math>&nbsp;<br>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>  
  
 
'''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''  
 
'''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''  
  
 
<br> <math>\therefore d=
 
<br> <math>\therefore d=
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0</math><br>  
+
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0</math>  
  
 
----
 
----
Line 41: Line 82:
 
</span></font>  
 
</span></font>  
  
'''<font face="serif"><math>\text{It is equivalent to minimize } f\left(x\right) \text{,  }</math>&nbsp;&nbsp;</font><math>\text{  subject to } g_{1}(x)\leq0, g_{2}(x)\leq0</math>'''  
+
'''<font face="serif"><math>\text{It is equivalent to minimize } f\left(x\right) \text{,  }</math>&nbsp;&nbsp;</font>'''  
  
<font color="#ff0000" style="font-size: 17px;">'''<math>\text{FONC: } l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x)=\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0</math>'''</font><font face="serif"><br></font>
+
'''<font face="serif"></font>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{  subject to } g_{1}(x)\leq0, g_{2}(x)\leq0</math>'''  
  
<span class="texhtml">− μ<sub>1</sub>''x''<sub>1</sub> − μ<sub>2</sub>''x''<sub>2</sub> = 0 and ''x''<sub>1</sub> = 1 / 2,''x''<sub>2</sub> = 0&nbsp;<math>− \mu_{1}x_{1} \mu_{2}x_{2} = 0 and x_{1} = \frac{1}{2},x_{2} = 0</math></span>
+
<font color="#ff0000" style="font-size: 17px;">'''<math>\left\{\begin{matrix}
 +
l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x) \\ =\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0\\
 +
-\mu_{1}x_{1}-\mu_{2}x_{2} = 0 \\
 +
x_{1} = \frac{1}{2},x_{2} = 0
 +
\end{matrix}\right.</math>'''</font><br><math>\Rightarrow \mu_{1}=0 , \mu_{2}=3/2</math>&nbsp; &nbsp;
  
<math>\Rightarrow \mu_{1}=0 , \mu_{2}=3/2</math>&nbsp; &nbsp; <math>\therefore x^{*} \text{ satisfies FONC}</math>  
+
<math>\therefore x^{*} \text{ satisfies FONC}</math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
  
<math>\text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x,\mu)=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right)</math>  
+
<math>\color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.}</math>  
  
<math>T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right)</math><br>  
+
<math>\text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right)</math>
 +
 
 +
<font color="#ff0000">'''<math>T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right)</math><br>'''</font>
 +
 
 +
<math>\color{green} \text {Here not using formal set expression. }</math>&nbsp;&nbsp;<math>\color{red} T\left( x^{* },\mu^{* } \right) \text{ should be } T\left( x^{* } \right)</math>  
  
 
<math>\text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0</math>  
 
<math>\text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0</math>  
  
 
<math>y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.}</math><br>  
 
<math>y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.}</math><br>  
 +
 +
<math>\color{red} \text{For SONC, } T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right)  \right \}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\color{red}  J\left(x^{*}\right)= \left \{  j:g_{j}\left(x^{*}\right)=0 \right \}</math>
 +
 +
<math>\color{red} \text{For SOSC, }  \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right)  \right \}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \}</math><br>
 +
 +
<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset 
 +
J\left(x^{*}\right)</math>, &nbsp; &nbsp;&nbsp;<math>\color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right)</math>
  
 
----
 
----
Line 61: Line 121:
 
<math>\color{blue}\text{Solution 2:}</math><br>  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
  
<math>\text{The problem is equivalent to  min} f\left(x_{1},x{2}\right) = -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>&nbsp;&nbsp;
+
<math>\text{The problem is equivalent to  min} f\left(x_{1},x_{2}\right) = x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2}</math>&nbsp;&nbsp;  
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  x_{1}\leq0, x_{2}\leq0</math>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  x_{1}\leq0, x_{2}\leq0</math>  
Line 70: Line 130:
 
\frac{\partial^{2} f}{\partial x_{1}^{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}}\left ( x \right )\\  
 
\frac{\partial^{2} f}{\partial x_{1}^{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}}\left ( x \right )\\  
 
\frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left ( x \right )
 
\frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left ( x \right )
\end{bmatrix}=\left [ \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right ]</math><font color="#ff0000"><span style="font-size: 20px;"></span></font>  
+
\end{bmatrix}=\left [ \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right ]</math>  
  
 
<math>\text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix}</math>  
 
<math>\text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix}</math>  
  
<math>d^{T} \nabla f\left ( x^{*} \right )=0  \cdots \left ( 1 \right )</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )=0  \cdots \left ( 1 \right )</math>&nbsp; &nbsp; &nbsp;
  
<math>d^{T} F\left ( x^{*} \right )d\geq 0  \cdots \left ( 2\right )</math><br>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>d^{T} F\left ( x^{*} \right )d\geq 0  \cdots \left ( 2\right )</math><br>  
  
<math>\text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{2}=0, d_{1}\in\Re</math><br>  
+
<math>\text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{1}\in\Re, d_{2}=0</math><br>  
  
<math>\text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0</math><br>  
+
<math>\text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0</math>&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{green}  A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0</math><br>  
  
 
<math>\therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0</math>  
 
<math>\therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0</math>  
  
<font face="serif"><math>\text{The point} x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.}</math><br></font>  
+
<font face="serif"><math>\text{The point } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.}</math><br></font>  
  
<br>  
+
----
 +
----
 +
<font face="serif"></font><math>\color{blue}\text{Related Problem: For function }</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>f\left( x_{1},x_{2}  \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2}</math>
 +
 
 +
<math>\color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.}</math>
 +
 
 +
<math>\color{blue}\text{Solution:}</math>
 +
 
 +
<math>\text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix}
 +
x_{1}^{2}-x_{2}\\
 +
x_{2}^{2}-x_{1}
 +
\end{bmatrix}=0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix}
 +
0\\
 +
0
 +
\end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix}
 +
1\\
 +
1
 +
\end{bmatrix}</math>
 +
 
 +
<math>\text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix}
 +
2x_{1} & -1\\
 +
-1 & 2x_{2}
 +
\end{bmatrix}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix}
 +
0 & -1\\
 +
-1 & 0
 +
\end{bmatrix} \text{ is indefinite. The point is not a minimizer.}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix}
 +
0 & -1\\
 +
-1 & 0
 +
\end{bmatrix} \text{ is positive definite. }</math>
 +
 
 +
<math>\therefore x^{\left ( 2 \right )}=\begin{bmatrix}
 +
1\\
 +
1
 +
\end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.}</math>  
  
 
----
 
----
  
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]  
+
Automatic Control (AC)- Question 3, August 2011
 +
 
 +
Go to
 +
 
 +
*Part 1: [[ECE-QE_AC3-2011_solusion-1|solutions and discussions]]
 +
*Part 2: [[ECE-QE AC3-2011 solusion-2|solutions and discussions]]
 +
*Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]
 +
*Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]
 +
*Part 5: [[ECE-QE AC3-2011 solusion-5|solutions and discussions]]
 +
 
 +
----
  
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 10:09, 13 September 2013


ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, August 2011, Part 1

Part 1,2,3,4,5

 $ \color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $


Definition: Feasible Direction

        $ \text{A vector } d\in\Re^{n}, d\neq0, \text{ is a feasible direction at } x\in\Omega $

        $ \text{if there exists } \alpha_{0}>0 \text{ such that } x+\alpha d\in\Omega \text{ for all } \alpha\in\left[ 0,\alpha_{0}\right] $

FONC:

        If x* is a local minimizer of f over Ω, then for any feasible direction d at x*, we have 

        $ d^{T} \nabla f\left ( x^{*} \right )\geq0 $

FONC Interior Case:

         $ \nabla f\left ( x^{*} \right )=0 $

SONC: 

        Let x* a local minimizer of f and d a feasible direction at x*,

        If $ d^{T} \nabla f\left ( x^{*} \right )=0 $ , then  $ d^{T} F\left ( x^{*} \right )d\geq 0 $

SONC Interior Case: 

        If $ \nabla f\left ( x^{*} \right )=0 $  , then $ d^{T} F\left ( x^{*} \right )d\geq 0 $


$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

$ \color{blue}\text{Solution 1:} $

$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $ 

         $ \left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in \left[0,\alpha_{0}\right] $

$ \text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0. $


$ \color{blue}\text{Solution 2:} $

$ d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*} $ 

         $ \text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $

$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $


$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0 $


$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $

$ \color{blue}\text{Solution 1:} $

$ \text{Let } f\left(x\right)=x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} \text{ , } g_{1}\left(x\right)=-x_{1} \text{ , } g_{2}\left(x\right)=-x_{2} $

$ \text{It is equivalent to minimize } f\left(x\right) \text{, } $  

                                           $ \text{ subject to } g_{1}(x)\leq0, g_{2}(x)\leq0 $

$ \left\{\begin{matrix} l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x) \\ =\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0\\ -\mu_{1}x_{1}-\mu_{2}x_{2} = 0 \\ x_{1} = \frac{1}{2},x_{2} = 0 \end{matrix}\right. $
$ \Rightarrow \mu_{1}=0 , \mu_{2}=3/2 $   

$ \therefore x^{*} \text{ satisfies FONC} $              

$ \color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.} $

$ \text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right) $

$ T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right) $

$ \color{green} \text {Here not using formal set expression. } $  $ \color{red} T\left( x^{* },\mu^{* } \right) \text{ should be } T\left( x^{* } \right) $

$ \text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0 $

$ y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.} $

$ \color{red} \text{For SONC, } T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right) \right \} $

                           $ \color{red} J\left(x^{*}\right)= \left \{ j:g_{j}\left(x^{*}\right)=0 \right \} $

$ \color{red} \text{For SOSC, } \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $

                          $ \color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \} $

$ \color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset J\left(x^{*}\right) $,     $ \color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right) $


$ \color{blue}\text{Solution 2:} $

$ \text{The problem is equivalent to min} f\left(x_{1},x_{2}\right) = x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} $  

                                                                      $ \text{subject to } x_{1}\leq0, x_{2}\leq0 $

$ Df\left ( x \right )=\left ( \nabla f\left ( x \right ) \right )^{T} = \left [ \frac{\partial f}{\partial x_{1}}\left ( x \right ),\frac{\partial f}{\partial x_{2}}\left ( x \right ) \right ]=\left [ 2x_{1}-1+x_{2},1+x_{1} \right ] $

$ F\left ( x \right ) =D^{2}f\left ( x \right )=\begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}}\left ( x \right )\\ \frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left ( x \right ) \end{bmatrix}=\left [ \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right ] $

$ \text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} $

                  $ d^{T} \nabla f\left ( x^{*} \right )=0 \cdots \left ( 1 \right ) $     

                  $ d^{T} F\left ( x^{*} \right )d\geq 0 \cdots \left ( 2\right ) $

$ \text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{1}\in\Re, d_{2}=0 $

$ \text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0 $       $ \color{green} A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0 $

$ \therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0 $

$ \text{The point } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.} $



$ \color{blue}\text{Related Problem: For function } $

        $ f\left( x_{1},x_{2} \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2} $

$ \color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.} $

$ \color{blue}\text{Solution:} $

$ \text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix} x_{1}^{2}-x_{2}\\ x_{2}^{2}-x_{1} \end{bmatrix}=0 $

        $ \Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} $

$ \text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix} 2x_{1} & -1\\ -1 & 2x_{2} \end{bmatrix} $

        $ \text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is indefinite. The point is not a minimizer.} $

        $ \text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is positive definite. } $

$ \therefore x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.} $


Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang