Line 27: Line 27:
 
1      \\
 
1      \\
 
-3
 
-3
\end{bmatrix}
+
\end{bmatrix} </math>
 +
 
 +
<math>\mathbf{c)} \qquad \lambda I-A=\begin{vmatrix}
 +
\lambda-2 & -1 \\
 +
0 & \lambda+1
 +
 
 +
\end{vmatrix} \qquad (\lambda-2)(\lambda+1)=0 \qquad \lambda1=2 \qquad \lambda2=-1 \\</math>
 +
 
 +
<math>\lambda=2 \qquad \begin{bmatrix}
 +
0 & -1 & 1 \\
 +
0 & 3 &-3
 +
\end{bmatrix} \\
 +
rank<2 \qquad associated \qquad with \\
 +
\qquad \qquad \lambda=2>0 \\ </math>
 +
 
 +
<math>\Rightarrow \qquad  not \qquad stablizable \\</math>
 +
 
 +
<math>\mathbf{d)} \qquad \lambda=-1 \qquad \begin{vmatrix}
 +
-3 & -1 & 1 \\
 +
0 & 0 & -3
 +
\end{vmatrix} \qquad rank=2 \\ </math>
 +
 
 +
<math>\Rightarrow \qquad \lambda=2 \qquad has \qquad to \qquad be \qquad eigeavalue  </math>
 +
 
 +
  <math>\Rightarrow \qquad \begin{bmatrix}
 +
1  &  -1
 +
\end{bmatrix}  can \qquad not \qquad be \qquad eigeavalues  </math>

Revision as of 21:43, 19 May 2017

AC-2 2011

P1.

$ \mathbf{a)} \qquad C=\begin{bmatrix} B & AB\end{bmatrix}=\begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} $

$ \Rightarrow \qquad Not \quad controllable. \qquad Subspace \begin{bmatrix} 1 \\ -3 \end{bmatrix} $

$ \mathbf{b)} \qquad 0=\begin{bmatrix} C \\ CA \end{bmatrix}=\begin{bmatrix} 3 & 1 \\ 6 & 2 \end{bmatrix} $

Not observable.

$ 3x_1+r=0 \qquad x_1=-\frac{1}{3}r \qquad span \begin{bmatrix} 1 \\ -3 \end{bmatrix} $

$ \mathbf{c)} \qquad \lambda I-A=\begin{vmatrix} \lambda-2 & -1 \\ 0 & \lambda+1 \end{vmatrix} \qquad (\lambda-2)(\lambda+1)=0 \qquad \lambda1=2 \qquad \lambda2=-1 \\ $

$ \lambda=2 \qquad \begin{bmatrix} 0 & -1 & 1 \\ 0 & 3 &-3 \end{bmatrix} \\ rank<2 \qquad associated \qquad with \\ \qquad \qquad \lambda=2>0 \\ $

$ \Rightarrow \qquad not \qquad stablizable \\ $

$ \mathbf{d)} \qquad \lambda=-1 \qquad \begin{vmatrix} -3 & -1 & 1 \\ 0 & 0 & -3 \end{vmatrix} \qquad rank=2 \\ $

$ \Rightarrow \qquad \lambda=2 \qquad has \qquad to \qquad be \qquad eigeavalue $

  $ \Rightarrow \qquad \begin{bmatrix} 1  &  -1 \end{bmatrix}  can \qquad not \qquad be \qquad eigeavalues   $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett