Line 22: Line 22:
 
a) <math>\lambda_n^c=\lambda_n^b-\lambda_n^d</math>
 
a) <math>\lambda_n^c=\lambda_n^b-\lambda_n^d</math>
  
b) <math>G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n\deltad)\lambda_n^c</math>
+
b) <math>G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n\delta d)\lambda_n^c</math>
  
 
c)
 
c)

Revision as of 19:16, 9 July 2019


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2016 (Published in Jul 2019)

Problem 1

a) $ \lambda_n^c=\lambda_n^b-\lambda_n^d $

b) $ G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n\delta d)\lambda_n^c $

c)

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva