m |
|||

Line 34: | Line 34: | ||

</center> | </center> | ||

− | # Calculate an expression for <math>\hat{P}_n</math>, an estimate of the integral intensity in terms of <math>\lambda_n</math>, <math>\lambda_n^b</math>, and <math>\ | + | # Calculate an expression for <math>\hat{P}_n</math>, an estimate of the integral intensity in terms of <math>\lambda_n</math>, <math>\lambda_n^b</math>, and <math>\lambda_b^d</math>. |

+ | |||

+ | <center> | ||

+ | <math> | ||

+ | \lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt} | ||

+ | \hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d} | ||

+ | </math> | ||

+ | </center> |

## Revision as of 23:32, 6 July 2019

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2016 (Published on Jul 2019)

## Problem 1

- Calculate an expression for $ \lambda_n^c $, the X-ray energy corrected for the dark current.

$ \lambda_n^c=\lambda_n^b-\lambda_n^d $

- Calculate an expression for $ G_n $, the X-ray attenuation due to the object's presence.

$ G_n=-\mu(x,y_0+n*\Delta d)\lambda_n $

- Calculate an expression for $ \hat{P}_n $, an estimate of the integral intensity in terms of $ \lambda_n $, $ \lambda_n^b $, and $ \lambda_b^d $.

$ \lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt} \hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d} $