Line 31: | Line 31: | ||

<math>G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n * \Delta d)\lambda_n^c</math> | <math>G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n * \Delta d)\lambda_n^c</math> | ||

</center> | </center> | ||

+ | |||

+ | # |

## Revision as of 19:06, 9 July 2019

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2016 (Published in Jul 2019)

## Problem 1

- Calcualte an expression for $ \lambda_n^c $, the X-ray energy corrected for the dark current

$ \lambda_n^c=\lambda_n^b-\lambda_n^d $

- Calculate an expression for $ G_n $, the X-ray attenuation due to the object's presence

$ G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n * \Delta d)\lambda_n^c $