Line 22: | Line 22: | ||

a) <math>\lambda_n^c=\lambda_n^b-\lambda_n^d</math> | a) <math>\lambda_n^c=\lambda_n^b-\lambda_n^d</math> | ||

− | b) <math>G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n\ | + | b) <math>G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n\Delta d)\lambda_n^c</math> |

− | c) | + | c) <math>\lambda_n = \lambda_n^c e^{-\int_{0}^{x}\mu(t)dt} \Longrightarrow \hat{P}_n = \int_{0}^{x}\mu(t)dt= -ln(\frac{\lambda_n}{\lambda_n^c}) = -ln(\frac{\lambda_n}{\lambda_n^b-\lambda_n^d})<\math> |

+ | |||

+ | d) <math>\hat{P}_n = \int_{0}^{T_n}\mu_0dt = \mu_0 T_n<\math> | ||

+ | A straight line with slope <math>\mu_0<\math> | ||

+ | |||

+ | <math><\math> | ||

+ | |||

+ | |||

+ | ==Problem 2== | ||

+ | |||

+ | a)Since U is $p \times N$, $\Sigma$ and V are $N \times N$\\ |

## Revision as of 19:21, 9 July 2019

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2016 (Published in Jul 2019)

## Problem 1

a) $ \lambda_n^c=\lambda_n^b-\lambda_n^d $

b) $ G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n\Delta d)\lambda_n^c $

c) $ \lambda_n = \lambda_n^c e^{-\int_{0}^{x}\mu(t)dt} \Longrightarrow \hat{P}_n = \int_{0}^{x}\mu(t)dt= -ln(\frac{\lambda_n}{\lambda_n^c}) = -ln(\frac{\lambda_n}{\lambda_n^b-\lambda_n^d})<\math> d) <math>\hat{P}_n = \int_{0}^{T_n}\mu_0dt = \mu_0 T_n<\math> A straight line with slope <math>\mu_0<\math> <math><\math> ==Problem 2== a)Since U is $p \times N$, $\Sigma$ and V are $N \times N$\\ $