Revision as of 05:32, 13 April 2013 by Oadeosun (Talk | contribs)

Discriminant Functions For The Normal Density - Part 1


      Continuing from where we left of in Part 1, after establishing the basic format of a discriminant function we had;

$ g_i(\mathbf{Y}) = - \frac{1}{2} \left (\mathbf{x} - \boldsymbol{\mu}_i \right)^t\boldsymbol{\Sigma}_i^{-1} \left (\mathbf{x} - \boldsymbol{\mu}_i \right) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(w_i) $

we will now look at the multiple cases for a multivariate normal distribution.


Case 1: Σi = σ2I

       This is the simplest case and it occurs when the features are statistically independent and each feature has the same variance, σ2. Here, the covariance matrix is diagonal since its simply σ2 times the identity matrix I. This means that each sample falls into equal sized clusters that are centered about their respective mean vectors. The computation of the determinant and the inverse |Σi| = σ2d and Σi-1 = (1/σ2)I. Because both |Σi| and the (d/2) ln 2π term in the equation above are independent of i, we can ignore them and thus we obtain this simplified discriminant function:




Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett