Line 9: Line 9:
 
|Periodicity|| <math>\chi(\omega + 2\pi) = \chi(\omega)</math> || Example
 
|Periodicity|| <math>\chi(\omega + 2\pi) = \chi(\omega)</math> || Example
 
|-
 
|-
| Linearity || <math>ax_{1}[n] + bx_{2}[n] a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || Example
+
| Linearity || <math>ax_{1}[n] + bx_{2}[n] \rightarrow a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || Example
 
|-
 
|-
| Time Shifting & Frequency Shifting || 1) <math>x[n - n_{o}] e^{-j\omega n_{o}}\chi(\omega)</math><br />
+
| Time Shifting & Frequency Shifting || 1) <math>x[n - n_{o}] \rightarrow e^{-j\omega n_{o}}\chi(\omega)</math><br />
2) <math>e^{-j{\omega}_{o}n}x[n] \chi[\omega - \omega_{o}]</math><br />
+
2) <math>e^{-j{\omega}_{o}n}x[n] \rightarrow \chi[\omega - \omega_{o}]</math><br />
 
|| Example
 
|| Example
 
|-
 
|-
| Conjugate & Conjugate Symmetry || <math>x[n] \chi^{*}(-\omega)</math> || <math></math>
+
| Conjugate & Conjugate Symmetry || <math>x[n] \rightarrow \chi^{*}(-\omega)</math> || <math></math>
 
|-
 
|-
 
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || <math></math>
 
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || <math></math>

Revision as of 23:12, 18 March 2018

Discrete-Time Fourier Transform Properties with Proofs


Property Name Property Proof
Periodicity $ \chi(\omega + 2\pi) = \chi(\omega) $ Example
Linearity $ ax_{1}[n] + bx_{2}[n] \rightarrow a\chi_{1}(\omega) + b\chi_{2}(\omega) $ Example
Time Shifting & Frequency Shifting 1) $ x[n - n_{o}] \rightarrow e^{-j\omega n_{o}}\chi(\omega) $

2) $ e^{-j{\omega}_{o}n}x[n] \rightarrow \chi[\omega - \omega_{o}] $

Example
Conjugate & Conjugate Symmetry $ x[n] \rightarrow \chi^{*}(-\omega) $
Parversal Relation $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $
Convolution $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega) $
Multiplication
Duality
Differentiation in Frequency

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett