Revision as of 16:24, 7 December 2011 by Marti450 (Talk | contribs)

Determinants




Introduction:


If A is a square matrix then the determinant function is denoted by det and det(A)

For an instance we have a 2 x 2 matrix denominated A, therefore:


                                                                                         det(A) = [a11 ,  a12 ; a21 , a22 ]

As we already defined the determinant function we can write some formulas. The formulas for any 2 x 2 and 3 x 3 matrix will be:

                     

                      The determinant function for a 2 x 2 matrix is:


                                                                                      $ det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right) $ 

                                                                                               = (a11 * a22) - (a12 * a21 )                        

                   

                      The determinant function for a 3 x 3 matrix is: 


                                                                               $ det(A)=\left(\begin{array}{cccc}a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{array}\right) $

                                         = (a11 * a22 * a33) + (a12 * a23 * a31) + (a13 * a21 * a32) - (a12 * a21 * a33) - (a11 * a23 * a32) - (a13 * a22 * a31



Properties of Determinants:


Theorem 1: Let A be an n x n matrix then; det(A) = det(At)


Theorem 2: If a matrix B results from matrix A by interchanging two different rows (columns) of A, then; det(B) = - det(A) 


Theorem 3: If two rows (columns) of A are equal, then; det(A) = 0


Theorem 4: If a row (column) of A consists entirely of zeros, then; det(A) = 0


Theorem 5: If B obtained from A by multiplying a row (column) of A by a real number k, then;det(B) = kdet(A)    

 

Theorem 6: If B = [bij] is obained from A = [aij] by adding to each element of the rth row (column) of A, k times the corresponding element of the sth row (column), r not equal s, of A, then; det(B) = det(A)


Theorem 7: If a matrix A = [aij] is upper (lower) triangular, then; det(A) = a11*a12...ann ; tha is, the determinant of a triangular matrix is the product of the element on themain diagonal.                                                       

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett