Line 93: Line 93:
 
<u>Theorem 10:</u> Let A = [aij] be an n x n matrix. then;  
 
<u>Theorem 10:</u> Let A = [aij] be an n x n matrix. then;  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; det(A) = a<sub>i1</sub>A<sub>i1</sub>+a<sub>i2</sub>A<sub>i2</sub>+...+a<sub>in</sub>A<sub>in</sub> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;det(A)=a<sub>1j</sub>A<sub>1j</sub>+a<sub>2j</sub>A<sub>2j</sub>+...+a<sub>nj</sub>A<sub>nj</sub>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; det(A) = a<sub>i1</sub>A<sub>i1</sub>+a<sub>i2</sub>A<sub>i2</sub>+...+a<sub>in</sub>A<sub>in</sub> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;det(A)=a<sub>1j</sub>A<sub>1j</sub>+a<sub>2j</sub>A<sub>2j</sub>+...+a<sub>nj</sub>A<sub>nj</sub>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[expansion of det(A) along the ''i''th row] &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[expansion of det(A) along the ''j''th column]  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; [expansion of det(A) along the ''i''th row] &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[expansion of det(A) along the ''j''th column]  
  
 
<br>  
 
<br>  
Line 103: Line 103:
 
----
 
----
  
<u>'''''Inverse of a Matrix:'''''</u>
+
<u>'''''Inverse of a Matrix:'''''</u>  
  
<u>''</u>
+
&lt;u&lt;/u&gt;
  
Theorem 11:&nbsp;
+
<br>
 +
 
 +
<u>Theorem 11:</u> If A = [aij] is an n x nmatrix, then;&nbsp;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; a<sub>i1</sub>A<sub>kl</sub>+a<sub>i2</sub>A<sub>k2</sub>+...+a<sub>in</sub>A<sub>kn</sub> = 0 &nbsp; &nbsp;for ''i'' not equal ''k'' &nbsp; &nbsp;; &nbsp; &nbsp;a<sub>1j</sub>A<sub>1k</sub>+a<sub>2j</sub>A<sub>2k</sub>+...+a<sub>nj</sub>A<sub>nk</sub> &nbsp; &nbsp;for ''j'' not equal ''k''
 +
 
 +
<br> Let A = [aij] be an n x n matrix. Then n xn adj A, called the adjoint of A, is the matrix whose (i,j)th entry is the cofactor Aji of aji. Thus;
 +
 
 +
<br>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>adj A=\left(\begin{array}{cccc}A11&A21&...&An1\\A12&A22&...&An2\\...&...&...&...\\A1n&A2n&...&Ann\end{array}\right)</math>
 +
 
 +
<br>
 +
 
 +
<strike></strike><sub></sub>Theorem 12: If A = [a<sub>ij</sub>] is an n x n matrix, then; '''A(adj A) = (adj A)A = det(A)I<sub>n</sub>.'''
 +
 
 +
----
 +
 
 +
----
 +
 
 +
<u>'''''Other applications of Determinants:'''''</u>
 +
 
 +
&lt;u&lt;/u&gt;
 +
 
 +
To obtain another method for solving a linear system of n equations in n unknowns is known as the Cramer's Rule.
 +
 
 +
<br>
 +
 
 +
Theorem 13: Cramer's Rule
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Let;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;a<sub>11</sub>x<sub>1</sub> + a<sub>12</sub>x<sub>2</sub> + ... + a<sub>1n</sub>x<sub>n</sub> = b<sub>1</sub>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;a<sub>21</sub>x<sub>1</sub> + a<sub>22</sub>x<sub>2</sub> + ... + a<sub>2n</sub>x<sub>n</sub> = b<sub>2</sub>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;...&nbsp;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;a<sub>n1</sub>x<sub>1</sub> + a<sub>n2</sub>x<sub>2</sub> + ... + a<sub>nn</sub>x<sub>n</sub> = b<sub>n</sub>
 +
 
 +
<sub></sub>
 +
 
 +
be a linear system of n equations in n unknowns, and let A = [aij] be the coefficient matrix so that we can write the given system as Ax = b, where
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>b=\left(\begin{array}{cccc}b1\\b2\\...\\bn\end{array}\right)</math>
 +
 
 +
If det(A) not equal 0, then the system has the unique solutions

Revision as of 17:11, 7 December 2011

Determinants




Introduction:


If A is a square matrix then the determinant function is denoted by det and det(A)

For an instance we have a 2 x 2 matrix denominated A, therefore:


                                                                                         det(A) = [a11 ,  a12 ; a21 , a22 ]

As we already defined the determinant function we can write some formulas. The formulas for any 2 x 2 and 3 x 3 matrix will be:

                     

                      The determinant function for a 2 x 2 matrix is:


                                                                                      $ det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right) $ 

                                                                                               = (a11 * a22) - (a12 * a21 )                        

                   

                      The determinant function for a 3 x 3 matrix is: 


                                                                               $ det(A)=\left(\begin{array}{cccc}a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{array}\right) $

                                         = (a11 * a22 * a33) + (a12 * a23 * a31) + (a13 * a21 * a32) - (a12 * a21 * a33) - (a11 * a23 * a32) - (a13 * a22 * a31



Properties of Determinants:


Theorem 1: Let A be an n x n matrix then; det(A) = det(At)


Theorem 2: If a matrix B results from matrix A by interchanging two different rows (columns) of A, then; det(B) = - det(A) 


Theorem 3: If two rows (columns) of A are equal, then; det(A) = 0


Theorem 4: If a row (column) of A consists entirely of zeros, then; det(A) = 0


Theorem 5: If B obtained from A by multiplying a row (column) of A by a real number k, then;det(B) = kdet(A)    

 

Theorem 6: If B = [bij] is obained from A = [aij] by adding to each element of the rth row (column) of A, k times the corresponding element of the sth row (column), r not equal s, of A, then; det(B) = det(A)


Theorem 7: If a matrix A = [aij] is upper (lower) triangular, then; det(A) = a11*a12...ann ; tha is, the determinant of a triangular matrix is the product of the element on themain diagonal.                                                       


Theorem 8: If A is an n x n matrix, then A is nonsingular if and only if det(A) not equal 0


Theorem 9: If A and B are n x n matrices, then; det(AB) = det(A)det(B)




Cofactor Expansion: 

The cofactor expansion is a method for evaluating the determinant of an n xn matrix that reduces the problem to the evaluation of determinants of matrices of order n - 1. We should repeat the proces of (n-1) x (n-1) until we have a 2 x 2 matrices. 


Let A = [aij] be an n x n matrix. Let Mij be the (n-1) x (n-1) submatrix of A obtained by deleting the ith row and jth row column of A. The determinant det(Mij) is called the minor aij. Also, Let A = [aij] be an n x n matrix. The cofactor Aij of aij is defined as Aij = (-1)i+j det(Mij)


Theorem 10: Let A = [aij] be an n x n matrix. then;

                                det(A) = ai1Ai1+ai2Ai2+...+ainAin                             and                        det(A)=a1jA1j+a2jA2j+...+anjAnj

                            [expansion of det(A) along the ith row]                                                [expansion of det(A) along the jth column]




Inverse of a Matrix:

<u</u>


Theorem 11: If A = [aij] is an n x nmatrix, then; 

                                      ai1Akl+ai2Ak2+...+ainAkn = 0    for i not equal k    ;    a1jA1k+a2jA2k+...+anjAnk    for j not equal k


Let A = [aij] be an n x n matrix. Then n xn adj A, called the adjoint of A, is the matrix whose (i,j)th entry is the cofactor Aji of aji. Thus;


                                                                     $ adj A=\left(\begin{array}{cccc}A11&A21&...&An1\\A12&A22&...&An2\\...&...&...&...\\A1n&A2n&...&Ann\end{array}\right) $


Theorem 12: If A = [aij] is an n x n matrix, then; A(adj A) = (adj A)A = det(A)In.



Other applications of Determinants:

<u</u>

To obtain another method for solving a linear system of n equations in n unknowns is known as the Cramer's Rule.


Theorem 13: Cramer's Rule

                                                                        Let;

                                                                                           a11x1 + a12x2 + ... + a1nxn = b1

                                                                                           a21x1 + a22x2 + ... + a2nxn = b2

                                                                                                                   ... 

                                                                                           an1x1 + an2x2 + ... + annxn = bn

be a linear system of n equations in n unknowns, and let A = [aij] be the coefficient matrix so that we can write the given system as Ax = b, where

                                                                                                    $ b=\left(\begin{array}{cccc}b1\\b2\\...\\bn\end{array}\right) $

If det(A) not equal 0, then the system has the unique solutions

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang