(New page: == Laplace Transform ==)
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
== Laplace Transform ==
+
== Amplitude Modulation ==
 +
 
 +
To perform amplitude modulation, we need a carrier <math>c(t)</math>. Specifically, we need either a complex exponential <math>c(t) = e^{w_{c}t+\theta_c}</math> or a sinusoid <math>c(t) = cos(w_{c}t+\theta_c)</math>.
 +
 
 +
<math>w_c</math> is referred to as the '''carrier frequency'''.
 +
 
 +
When <math>c(t)</math> is a complex exponential, <math>C(jw) = 2\pi\delta(w-w_c)</math>.
 +
 
 +
Therefore, <math>Y(jw) = X(jw-jw_c)</math>.
 +
 
 +
When <math>c(t)</math> is a sinusoid, <math>C(jw) = \pi[\delta(w-w_c)+\delta(w+w_c)]</math>.
 +
 
 +
Therefore, <math>Y(jw) = \frac{1}{2}[X(jw-jw_c)+X(jw+jw_c)]</math>.

Latest revision as of 17:39, 17 November 2008

Amplitude Modulation

To perform amplitude modulation, we need a carrier $ c(t) $. Specifically, we need either a complex exponential $ c(t) = e^{w_{c}t+\theta_c} $ or a sinusoid $ c(t) = cos(w_{c}t+\theta_c) $.

$ w_c $ is referred to as the carrier frequency.

When $ c(t) $ is a complex exponential, $ C(jw) = 2\pi\delta(w-w_c) $.

Therefore, $ Y(jw) = X(jw-jw_c) $.

When $ c(t) $ is a sinusoid, $ C(jw) = \pi[\delta(w-w_c)+\delta(w+w_c)] $.

Therefore, $ Y(jw) = \frac{1}{2}[X(jw-jw_c)+X(jw+jw_c)] $.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang