Line 165: Line 165:
 
<br>  
 
<br>  
  
<br>
+
== '''''Theorem'''''  ==
  
 
== Let {<span class="texhtml">''S'' = ''v''<sub>1</sub>,''v''<sub>2</sub>,...,''v''<sub>''n''</sub>''}''</span>  ==
 
== Let {<span class="texhtml">''S'' = ''v''<sub>1</sub>,''v''<sub>2</sub>,...,''v''<sub>''n''</sub>''}''</span>  ==
Line 171: Line 171:
 
== be a set of&nbsp;<span class="texhtml">''n''</span>&nbsp;vectors in&nbsp;<span class="texhtml">''R<sup>'''n'''</sup>''</span>'''''&nbsp;'''(&lt;span class="texhtml" /&gt;''R''<sub></sub>''. Let&nbsp;<span class="texhtml">''A''</span>&nbsp;be the matrix whose columns (rows) are the elements of&nbsp;<span class="texhtml">''S''</span>. Then&nbsp;<span class="texhtml">''S''</span>&nbsp;is linearly independent if and only if det(<span class="texhtml">''A''</span>) is not equal to 0.  ==
 
== be a set of&nbsp;<span class="texhtml">''n''</span>&nbsp;vectors in&nbsp;<span class="texhtml">''R<sup>'''n'''</sup>''</span>'''''&nbsp;'''(&lt;span class="texhtml" /&gt;''R''<sub></sub>''. Let&nbsp;<span class="texhtml">''A''</span>&nbsp;be the matrix whose columns (rows) are the elements of&nbsp;<span class="texhtml">''S''</span>. Then&nbsp;<span class="texhtml">''S''</span>&nbsp;is linearly independent if and only if det(<span class="texhtml">''A''</span>) is not equal to 0.  ==
  
<br>  
+
<u><br></u>  
 
+
=== <u>'''Proof'''</u> ===
+
 
+
== We shall prove the result for columns only; the proof for rows is analogous.  ==
+
 
+
== Suppose that&nbsp;''<span class="texhtml">S</span>''&nbsp;is linearly independent. Then it follows that the reduced row echelon form of&nbsp;''<span class="texhtml">A</span>''&nbsp;is''&nbsp;<span class="texhtml">I<sub>'''n'''</sub></span>'''''. '''Thus,&nbsp;''A''&nbsp;is row equivalent to ''I''<sub>''n''</sub>, and hence det(''<span class="texhtml">A</span>'') is not equal to 0. Conversely, if det(''<span class="texhtml">A</span>'') is not equal to 0, then''&nbsp;<span class="texhtml">A</span>''&nbsp;is row equivalent to&nbsp;''<span class="texhtml">I</span><sub><span class="texhtml">n</span></sub>''. Now assume that the rows of&nbsp;A&nbsp;are linearly dependent. Then it follows that the reduced row echelon form of&nbsp;''A''&nbsp;has a zero row, which contradicts the earlier conclusion that ''A''&nbsp;is row equivalent to ''I''<sub>''n''</sub>. Hence, rows of&nbsp;''A''&nbsp;are linearly independent.  ==
+
 
+
== <br>  ==
+
  
 
----
 
----
Line 204: Line 196:
  
 
== Since det(<span class="texhtml">''A''</span>) = 2, we conclude that&nbsp;<span class="texhtml">''S''</span>&nbsp;is linearly independent.  ==
 
== Since det(<span class="texhtml">''A''</span>) = 2, we conclude that&nbsp;<span class="texhtml">''S''</span>&nbsp;is linearly independent.  ==
 +
 +
----
  
 
<br>  
 
<br>  
  
223
+
== '''''Theorem'''''  ==
 +
 
 +
== Let&nbsp;<span class="texhtml">''S''<sub><span style="font-size: 17px;">1</span></sub>''&lt;span style="font-size: 17px;" /&gt;''&lt;span style="font-size: 17px;" /&gt;</span>&nbsp;and&nbsp;<span class="texhtml">''S''<sub>2</sub></span>&nbsp;be finite susbsets of a vector space and let&nbsp;<span class="texhtml">''S''<sub><span style="font-size: 17px;">1</span></sub></span>&nbsp;be a subset of&nbsp;<span class="texhtml">''S''<sub>2</sub></span>. Then the following statements are true:  ==
 +
 
 +
== (a) If&nbsp;<span class="texhtml">''S''<sub><span style="font-size: 17px;">1</span></sub></span>&nbsp;is linearly dependent, so is&nbsp;<span class="texhtml">''S''<sub>2</sub></span>.  ==
 +
 
 +
== (b) If&nbsp;<span class="texhtml">''S''<sub>2</sub></span>&nbsp;is linearly independent, so is&nbsp;<span class="texhtml">''S''<sub><span style="font-size: 17px;">1</span></sub></span>.  ==
  
 
----
 
----
 +
 +
<br>
 +
 +
== '''''Theorem'''''  ==
 +
 +
== The nonzero vectors v<sub>1</sub>,v<sub><span style="font-size: 17px;">2</span></sub>,...,v<sub></sub><sub>n</sub>&nbsp;in a vector space V&nbsp;are linearly dependent if and only if one of the vectors v<sub></sub><sub>j</sub>&nbsp;''<math>(2 \le j)</math>&nbsp;''is a linear combination of the preceding vectors v<sub>1</sub>,v<sub>2</sub>,...,<span class="texhtml">''v''<sub>''j''</sub> </span><sub><span class="texhtml">− 1.</span></sub> ==
 +
 +
<sub><span class="texhtml" /></sub>
 +
 +
== ''Example 4'' ==
 +
 +
== Let&nbsp;<math>V</math>=<math>R_3</math>&nbsp;and also&nbsp; ==

Revision as of 16:58, 16 December 2011

Contents

Linear Dependence



Definition




The vectors v1,v2,...,vk in a vector space V are said to be linearly dependent if there exist constans a1,a2,...,ak not all zero, such that

                                                                           $ \sum_{j=1}^k a_1v_1+a_2v_2+...+a_kv_k=0 $                        (1)                                 

Otherwise, v1,v2,...,vk are called linearly independent. That is v1,v2,...,vk are linearly independent if, whenever a1v1+ a2v2+...+akvk=0


                                                                       a1= a2=...=ak=0



If S = {v1,v2,...,vk} ,then we also say that the set S is linearly dependent or linearly independent if the vectors have the corresponding property.


         It should be emphasized that for any vectors v1,v2,...,vk, Equation (1) always holds if we choose all the scalars a1,a2,...,ak, equal to zero. The important point in this definition is whether it is possible to satisfy (1) with at least one of the scalars different from zero.


Remark: Definition is started for a finite set of vectors, but it also applies to an infinite set S of a vector space, using corresponding notation for infinite sums.


        To determine whether a set of vectors is linearly independent or linearly dependent, we use Equation (1). Regardless of the form of the vectors, Equation (1) yields a homogeneous linear system of equations. it is always consistent, since a1=a2=...=ak=0 is a solution. However, the main idea from the Definition is whether there is a nontrivial solution.





Example 1



Determine whether the vectors

$ v1=\left[\begin{array}{cccc}3\\2\\1\end{array}\right] $

$ v2=\left[\begin{array}{cccc}1\\2\\0\end{array}\right] $

$ v3=\left[\begin{array}{cccc}-1\\-2\\-1\end{array}\right] $

are linearly independent.


Solution

Forming Equation (1)

$ a1\left[\begin{array}{cccc}3\\2\\1\end{array}\right] $$ +a2\left[\begin{array}{cccc}1\\2\\0\end{array}\right] $$ +a3\left[\begin{array}{cccc}-1\\2\\-1\end{array}\right] $$ =\left[\begin{array}{cccc}0\\0\\0\end{array}\right] $

we obtain the homogeneous system

3a1 + a2a3 = 0

2a1 + 2a2 + 2a3 = 0

a1               − a3 = 0


The corresponding augmented matrix is

$ \left[\begin{array}{cccc}3&1&-1&|0\\2&2&2&|0\\1&0&-1&|0\end{array}\right] $


Whose reduced row echelon form is

$ \left[\begin{array}{cccc}1&0&-1&|0\\0&1&2&|0\\0&0&0&|0\end{array}\right] $


This there is a nontrivial solution

$ \left[\begin{array}{cccc}k\\-2k\\k\end{array}\right] $       k is not equal to 0

so the vectors are linearly dependent.






Example 2



Are the vectors

$ v1=\left[\begin{array}{cccc}1&0&1&2\end{array}\right] $

$ v2=\left[\begin{array}{cccc}0&1&1&2\end{array}\right] $

$ v3=\left[\begin{array}{cccc}1&1&1&3\end{array}\right] $     in R4

linearly dependent or linearly independent?


Solution

We form Equation (1),

a1v1+a2v2+a3v3=0

and solve for a1,a2,a3.

The resulting homogeneous system is

a1 + a3 = 0

a2 + a3 = 0

a1 + a2 + a3 = 0

2a1 + 2a2 + 3a3 = 0


The corresponding augmented matrix is

$ \left[\begin{array}{cccc}1&0&1&|0\\0&1&1&|0\\1&1&1&|0\\2&2&3&|0\end{array}\right] $


and its reduced row echelon form is

$ \left[\begin{array}{cccc}1&0&0&|0\\0&1&0&|0\\0&0&1&|0\\0&0&0&|0\end{array}\right] $


Thus the only solution is the trivial solution

a1 = a2 = a3 = 0

so the vectors are linearly independent.



Theorem

Let {S = v1,v2,...,vn}

be a set of n vectors in Rn (<span class="texhtml" />R. Let A be the matrix whose columns (rows) are the elements of S. Then S is linearly independent if and only if det(A) is not equal to 0.



Example 3


Is     $ S=\left[\begin{array}{cccc}1&2&3\end{array}\right] $ $ ,\left[\begin{array}{cccc}0&1&2\end{array}\right] $ $ ,\left[\begin{array}{cccc}3&0&-1\end{array}\right] $

a linearly independent set of vectors in R3?


Solution

We form the matrix A whose rows are the vectors in S:


$ A=\left[\begin{array}{cccc}1&2&3\\0&1&2\\3&0&-1\end{array}\right] $


Since det(A) = 2, we conclude that S is linearly independent.



Theorem

Let S1<span style="font-size: 17px;" /><span style="font-size: 17px;" /> and S2 be finite susbsets of a vector space and let S1 be a subset of S2. Then the following statements are true:

(a) If S1 is linearly dependent, so is S2.

(b) If S2 is linearly independent, so is S1.



Theorem

The nonzero vectors v1,v2,...,vn in a vector space V are linearly dependent if and only if one of the vectors vj $ (2 \le j) $ is a linear combination of the preceding vectors v1,v2,...,vj − 1.

<span class="texhtml" />

Example 4

Let $ V $=$ R_3 $ and also 

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang