(New page: Category:ECE600 Category:Set Theory Category:Math == Theorem == A\(B ∪ C) = (A\B) ∩ (A\C) ---- ==Proof== First we show that every element in A\(B ∪ C) is contained...)
 
Line 21: Line 21:
 
Since the sets A\(B ∪ C) and (A\B) ∩ (A\C) contain the same elements, A\(B ∪ C) = (A\B) ∩ (A\C).<br/>
 
Since the sets A\(B ∪ C) and (A\B) ∩ (A\C) contain the same elements, A\(B ∪ C) = (A\B) ∩ (A\C).<br/>
 
<math>\blacksquare</math>
 
<math>\blacksquare</math>
 +
 +
 +
----
 +
 +
'''Note'''<br/>
 +
Using the above result, we can prove that (A ∪ B)' = A' ∩ C' because:<br/>
 +
(A ∪ B)' = ''S''\(A ∪ B) = (''S''\A) ∩ (''S''\B) = A' ∩ B'.
  
  

Revision as of 13:29, 5 October 2013


Theorem

A\(B ∪ C) = (A\B) ∩ (A\C)



Proof

First we show that every element in A\(B ∪ C) is contained in both (A\B) and (A\C).
If x ∈ A\(B ∪ C), then x is in A, but x is not in (B ∪ C). Hence, x is in A and neither in B nor in C. So x is in A and not in B and x is in A but not in C. Therefore, x ∈ A\B and x ∈ A\C ⇒ x ∈ (A\B) ∩ (A\C). So we have that A\(B ∪ C) ⊂ (A\B) ∩ (A\C).

Next we show that if x is in (A\B) ∩ (A\C), then x is in A\(B ∪ C).
If x ∈ (A\B) ∩ (A\C), then x ∈ (A\B) or x ∈ (A\C). Hence x ∈ A and both x ∉ B and x ∉ C. So x ∈ A and x ∉ (B ∪ C) ⇒ x ∈ A\(B ∪ C). Therefore, (A\B) ∩ (A\C) ⊂ A\(B ∪ C).

Since the sets A\(B ∪ C) and (A\B) ∩ (A\C) contain the same elements, A\(B ∪ C) = (A\B) ∩ (A\C).
$ \blacksquare $



Note
Using the above result, we can prove that (A ∪ B)' = A' ∩ C' because:
(A ∪ B)' = S\(A ∪ B) = (S\A) ∩ (S\B) = A' ∩ B'.



References

  • R. G. Bartle, D. R. Sherbert, "Sets and Functions" in "Introduction to Real Analysis", 3rd Edition, John Wiley and Sons, Inc. 2000. ch 1, pp 3.



Back to list of all proofs

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics