Line 1: Line 1:
 
I did the first one by contradiction and a lot of cases.
 
I did the first one by contradiction and a lot of cases.
  
<math>Given A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \}
+
<math>Given A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \}, and I'll let \alpha = \sup A, \beta = \sup B</math>
  
WTS:  \sup(A+B) = \sup A + \sup B</math>
+
<math>WTS:  \sup(A+B) = \alpha + \beta</math>
 +
 
 +
<math>First of all, by the lub property of \mathbf{R} we know that these exist.</math>
 +
 
 +
<math>Now we show that \alpha + \beta is an upper bound of A+B by contradiction.  Thus \exist a,b \in A,B \ni a+b > \alpha + \beta </math>
 +
 
 +
<math>(\alpha - a) + (\beta - b) < 0</math>
 +
 
 +
<math>WLOG assume (\alpha - a) < 0, then \exists a \in A \ni a > \alpha, but \alpha = \sup A, contradiction.</math>
 +
 
 +
<math>\therefore \alpha + \beta is an upper bound of A+B</math>

Revision as of 05:39, 28 August 2008

I did the first one by contradiction and a lot of cases.

$ Given A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \}, and I'll let \alpha = \sup A, \beta = \sup B $

$ WTS: \sup(A+B) = \alpha + \beta $

$ First of all, by the lub property of \mathbf{R} we know that these exist. $

$ Now we show that \alpha + \beta is an upper bound of A+B by contradiction. Thus \exist a,b \in A,B \ni a+b > \alpha + \beta $

$ (\alpha - a) + (\beta - b) < 0 $

$ WLOG assume (\alpha - a) < 0, then \exists a \in A \ni a > \alpha, but \alpha = \sup A, contradiction. $

$ \therefore \alpha + \beta is an upper bound of A+B $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett