Line 8: Line 8:
 
\begin{array}{lcl}
 
\begin{array}{lcl}
 
1 \mbox{ kilometer (km) } & = & 1000 \mbox{ meter (m) } \\
 
1 \mbox{ kilometer (km) } & = & 1000 \mbox{ meter (m) } \\
1 \mbox{ meter (m) } & = & 109 \mbox{ centimeter (cm) } \\
+
1 \mbox{ meter (m) } & = & 100 \mbox{ centimeter (cm) } \\
 
1 \mbox{ centimeter (cm) } & = & 10^{-2} \mbox{ m } \\
 
1 \mbox{ centimeter (cm) } & = & 10^{-2} \mbox{ m } \\
 
1 \mbox{ millimeter (mm) } & = & 10^{-3} \mbox{ m } \\
 
1 \mbox{ millimeter (mm) } & = & 10^{-3} \mbox{ m } \\
 
 
  1 \mbox{ millimicron} ( m \mu )  & = & 10^{-9} \mbox{ m } \\
 
  1 \mbox{ millimicron} ( m \mu )  & = & 10^{-9} \mbox{ m } \\
 
  1 \mbox{ angstrom (A) } & = & 10^{-10} \mbox{ m } \\
 
  1 \mbox{ angstrom (A) } & = & 10^{-10} \mbox{ m } \\
Line 19: Line 18:
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Surface
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Surface
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Binomial random variable with parameters n and p
+
||<math>
| <math>\,E[X] = np,\ \ Var(X) = np(1-p)\,</math>
+
\begin{array}{lcl}
 +
1 \mbox{ square meter } (m^2) & = & 10,76 \mbox{ ft}^2 \\
 +
 
 +
\end{array}
 +
</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Poisson random variable with parameter <math>\lambda</math>
+
 
| <math>\,E[X] = \lambda,\ \ Var(X) = \lambda\,</math>
+
|-
+
| align="right" style="padding-right: 1em;" | Exponential random variable with parameter <math>\lambda</math>
+
| <math>\,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\,</math>
+
 
|}
 
|}
  

Revision as of 15:45, 23 November 2010

Conversion Factors
Length
$ \begin{array}{lcl} 1 \mbox{ kilometer (km) } & = & 1000 \mbox{ meter (m) } \\ 1 \mbox{ meter (m) } & = & 100 \mbox{ centimeter (cm) } \\ 1 \mbox{ centimeter (cm) } & = & 10^{-2} \mbox{ m } \\ 1 \mbox{ millimeter (mm) } & = & 10^{-3} \mbox{ m } \\ 1 \mbox{ millimicron} ( m \mu ) & = & 10^{-9} \mbox{ m } \\ 1 \mbox{ angstrom (A) } & = & 10^{-10} \mbox{ m } \\ \end{array} $
Surface
$ \begin{array}{lcl} 1 \mbox{ square meter } (m^2) & = & 10,76 \mbox{ ft}^2 \\ \end{array} $

Back to Collective Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett