Line 19: Line 19:
 
Norm of a signal:
 
Norm of a signal:
 
<math>\begin{align}
 
<math>\begin{align}
|\left(\frac{5}{6}\right)^n u[n]| = \left(\frac{5}{6}\right)^n
+
\left|\left(\frac{5}{6}\right)^n u[n]\right| = \left(\frac{5}{6}\right)^n
 
\end{align}</math>  
 
\end{align}</math>  
  
Line 25: Line 25:
 
<math>\begin{align}
 
<math>\begin{align}
 
E_{\infty}&=\sum_{n=0}^N \left|\left(\frac{5}{6}\right)^n\right|^2 \\
 
E_{\infty}&=\sum_{n=0}^N \left|\left(\frac{5}{6}\right)^n\right|^2 \\
&= \sum_{n=0}^N (\left(\frac{5}{6}\right)^{2n} \\
+
&= \sum_{n=0}^N (\left(\frac{5}{6}\right)^{2n}\right) \\
&= \sum_{n=0}^N (\left(\frac{25}{36}\right)^{n} \\
+
&= \sum_{n=0}^N (\left(\frac{25}{36}\right)^{n}\right) \\
 
&= \frac{1}{1-\frac{25}{36}} \\
 
&= \frac{1}{1-\frac{25}{36}} \\
 
&= \frac{36}{11} \\
 
&= \frac{36}{11} \\
Line 46: Line 46:
  
 
Conclusion:  
 
Conclusion:  
<math>E_{\infty} = \frac{36}{11} </math>, <math>P_{\infty} = 0 </math> \\
+
<math>E_{\infty} = \frac{36}{11} </math>, <math>P_{\infty} = 0 \\</math>  
 
When <math>E_{\infty} = \text{finite number} </math>,  
 
When <math>E_{\infty} = \text{finite number} </math>,  
 
<math>P_{\infty} = 0 </math>
 
<math>P_{\infty} = 0 </math>

Revision as of 18:04, 1 December 2018

Topic: Energy and Power Computation of a DT Exponential Signal </center>


Compute the energy $ E_\infty $ and the power $ P_\infty $ of this DT signal:


$ x[n] = \left(\frac{5}{6}\right)^n u[n] $


$  x[n] = \left\{ \begin{array}{ll}  \left(\frac{5}{6}\right)^n & \text{ if } n\ge q 0,\\  0 & \text{else}. \end{array} \right.  $

Norm of a signal: $ \begin{align} \left|\left(\frac{5}{6}\right)^n u[n]\right| = \left(\frac{5}{6}\right)^n \end{align} $


$ \begin{align} E_{\infty}&=\sum_{n=0}^N \left|\left(\frac{5}{6}\right)^n\right|^2 \\ &= \sum_{n=0}^N (\left(\frac{5}{6}\right)^{2n}\right) \\ &= \sum_{n=0}^N (\left(\frac{25}{36}\right)^{n}\right) \\ &= \frac{1}{1-\frac{25}{36}} \\ &= \frac{36}{11} \\ \end{align} $

$ E_{\infty} = \frac{36}{11} $.


$ \begin{align} &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2n \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\left(\frac{25}{36}\right)^n \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\frac{1}{1-\frac{25}{36}} \\ &= \lim_{N\rightarrow \infty} \left({ \frac{\frac{36}{11}}{2N+1}} \right) \\ &= 0 \\ \end{align} $


$ P_{\infty} = 0 $

Conclusion: $ E_{\infty} = \frac{36}{11} $, $ P_{\infty} = 0 \\ $ When $ E_{\infty} = \text{finite number} $, $ P_{\infty} = 0 $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett