Line 11: Line 11:
 
\left\{
 
\left\{
 
\begin{array}{ll}
 
\begin{array}{ll}
  \left(\frac{5}{6}\right)^n & \text{ if } n\geq 0,\\
+
  \left(\frac{5}{6}\right)^n & \text{ if } n\ge q 0,\\
 
  0 & \text{else}.
 
  0 & \text{else}.
 
\end{array}
 
\end{array}
Line 33: Line 33:
 
<math>E_{\infty} = \frac{36}{11} </math>.  
 
<math>E_{\infty} = \frac{36}{11} </math>.  
  
 +
 +
<math>\begin{align}
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2n \\  
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2n \\  
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}}  \\
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}}  \\
Line 39: Line 41:
 
&= \lim_{N\rightarrow \infty} \left({ \frac{\frac{36}{11}}{2N+1}} \right) \\
 
&= \lim_{N\rightarrow \infty} \left({ \frac{\frac{36}{11}}{2N+1}} \right) \\
 
&= 0  \\
 
&= 0  \\
 +
\end{align}</math>
  
  

Revision as of 17:54, 1 December 2018

Topic: Energy and Power Computation of a DT Exponential Signal </center>


Compute the energy $ E_\infty $ and the power $ P_\infty $ of this DT signal:


$ x[n] = \left(\frac{5}{6}\right)^n u[n] $


$  x[n] = \left\{ \begin{array}{ll}  \left(\frac{5}{6}\right)^n & \text{ if } n\ge q 0,\\  0 & \text{else}. \end{array} \right.  $

Norm of a signal: $ \begin{align} |\left(\frac{5}{6}\right)^n u[n]| = \left(\frac{5}{6}\right)^n \end{align} $


$ \begin{align} E_{\infty}&=\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2 \\ &= \sum_{n=0}^N (\left(\frac{5}{6}\right)^2n &= \sum_{n=0}^N \left(\frac{25}{36}\right)^n \\ &= \frac{1}{1-\frac{25}{36}} \\ &= \frac{36}{11} \\ \end{align} $

$ E_{\infty} = \frac{36}{11} $.


$ \begin{align} &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2n \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}} \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\ &= \lim_{N\rightarrow \infty} \left({ \frac{\frac{36}{11}}{2N+1}} \right) \\ &= 0 \\ \end{align} $


$ P_{\infty} = 0 $

Conclusion: $ E_{\infty} = \frac{36}{11} $, $ P_{\infty} = 0 $ When $ E_{\infty} = finite number $, </math>, $ P_{\infty} = 0 $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman