Line 21: Line 21:
 
|\left(\frac{5}{6}\right)^n u[n]| = \left(\frac{5}{6}\right)^n
 
|\left(\frac{5}{6}\right)^n u[n]| = \left(\frac{5}{6}\right)^n
 
\end{align}</math>  
 
\end{align}</math>  
 
 
<math>\begin{align}
 
E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |\left(\frac{5}{6}\right)^n}|^2 \\
 
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N \left(\frac{5}{6}\right)^{2n} \\
 
&=\infty. \\
 
\end{align}</math>
 
 
 
 
 
<math>\begin{align}
 
P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1  \\
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1  \\
 
&= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}}  \\
 
&= \lim_{N\rightarrow \infty}{1}\\
 
&= 1  \\
 
\end{align}</math>
 
  
  
 
<math>\begin{align}
 
<math>\begin{align}
 
E_{\infty}&=\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2 \\
 
E_{\infty}&=\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2 \\
&= \sum_{n=0}^N (\left(\frac{5}{6}\right)^2n *
+
&= \sum_{n=0}^N (\left(\frac{5}{6}\right)^2n
 
&= \sum_{n=0}^N \left(\frac{25}{36}\right)^n \\
 
&= \sum_{n=0}^N \left(\frac{25}{36}\right)^n \\
 
&= \frac{1}{1-\frac{25}{36}} \\
 
&= \frac{1}{1-\frac{25}{36}} \\
Line 50: Line 31:
 
\end{align}</math>  
 
\end{align}</math>  
  
<math>E_{\infty} = \infty</math>.  
+
<math>E_{\infty} = \frac{36}{11} </math>.  
  
 
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2n \\  
 
+
 
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N (\frac{1}{2})^n \\  
+
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}}  \\
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}}  \\
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\  
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\  
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\
&= \lim_{N\rightarrow \infty} \left(\frac{2-\frac{1}{2^N}}{2N+1} \right) \\
+
&= \lim_{N\rightarrow \infty} \left({ \frac{\frac{36}{11}}{2N+1}} \right) \\
&= \frac{2}{\infty}\\
+
 
&= 0  \\
 
&= 0  \\
  
  
<math>P_{\infty} = 1 </math>
+
<math>P_{\infty} = 0 </math>
  
 
Conclusion:  
 
Conclusion:  
 
+
<math>E_{\infty} = \frac{36}{11} </math>, <math>P_{\infty} = 0 </math>
Therefore, <math>E_{\infty} = \infty</math>, <math>P_{\infty} = 1 </math>
+
When <math>E_{\infty} = finite number </math>, </math>, <math>P_{\infty} = 0 </math>

Revision as of 17:01, 1 December 2018

Topic: Energy and Power Computation of a DT Exponential Signal </center>


Compute the energy $ E_\infty $ and the power $ P_\infty $ of this DT signal:


$ x[n] = \left(\frac{5}{6}\right)^n u[n] $


$  x[n] = \left\{ \begin{array}{ll} (\left\frac{5}{6}\right)\right^n & n \geq 0,\\  0 & \text{else}. \end{array} \right.  $

Norm of a signal: $ \begin{align} |\left(\frac{5}{6}\right)^n u[n]| = \left(\frac{5}{6}\right)^n \end{align} $


$ \begin{align} E_{\infty}&=\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2 \\ &= \sum_{n=0}^N (\left(\frac{5}{6}\right)^2n &= \sum_{n=0}^N \left(\frac{25}{36}\right)^n \\ &= \frac{1}{1-\frac{25}{36}} \\ &= \frac{36}{11} \\ \end{align} $

$ E_{\infty} = \frac{36}{11} $.

&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2n \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}} \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\ &= \lim_{N\rightarrow \infty} \left({ \frac{\frac{36}{11}}{2N+1}} \right) \\ &= 0 \\


$ P_{\infty} = 0 $

Conclusion: $ E_{\infty} = \frac{36}{11} $, $ P_{\infty} = 0 $ When $ E_{\infty} = finite number $, </math>, $ P_{\infty} = 0 $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch