Line 11: Line 11:
 
\left\{
 
\left\{
 
\begin{array}{ll}
 
\begin{array}{ll}
\left(\frac{5}{6}\right)\right^n & n \geq 0,\\
+
(\left\frac{5}{6}\right)\right^n & n \geq 0,\\
 
  0 & \text{else}.
 
  0 & \text{else}.
 
\end{array}
 
\end{array}
Line 30: Line 30:
  
  
<math>E_{\infty} = \infty</math>.
+
 
  
 
<math>\begin{align}
 
<math>\begin{align}
Line 40: Line 40:
 
&= 1  \\
 
&= 1  \\
 
\end{align}</math>
 
\end{align}</math>
 +
 +
 +
<math>\begin{align}
 +
E_{\infty}&=\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2 \\
 +
&= \sum_{n=0}^N (\left(\frac{5}{6}\right)^2n *
 +
&= \sum_{n=0}^N \left(\frac{25}{36}\right)^n \\
 +
&= \frac{1}{1-\frac{25}{36}} \\
 +
&= \frac{36}{11} \\
 +
\end{align}</math>
 +
 +
<math>E_{\infty} = \infty</math>.
 +
 +
 +
 +
 +
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N (\frac{1}{2})^n \\
 +
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}}  \\
 +
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\
 +
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\
 +
&= \lim_{N\rightarrow \infty} \left(\frac{2-\frac{1}{2^N}}{2N+1} \right) \\
 +
&= \frac{2}{\infty}\\
 +
&= 0  \\
  
  

Revision as of 16:01, 1 December 2018

Topic: Energy and Power Computation of a DT Exponential Signal </center>


Compute the energy $ E_\infty $ and the power $ P_\infty $ of this DT signal:


$ x[n] = \left(\frac{5}{6}\right)^n u[n] $


$  x[n] = \left\{ \begin{array}{ll} (\left\frac{5}{6}\right)\right^n & n \geq 0,\\  0 & \text{else}. \end{array} \right.  $

Norm of a signal: $ \begin{align} |\left(\frac{5}{6}\right)^n u[n]| = \left(\frac{5}{6}\right)^n \end{align} $


$ \begin{align} E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |\left(\frac{5}{6}\right)^n}|^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N \left(\frac{5}{6}\right)^{2n} \\ &=\infty. \\ \end{align} $



$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $


$ \begin{align} E_{\infty}&=\sum_{n=0}^N |\left(\frac{5}{6}\right)^n|^2 \\ &= \sum_{n=0}^N (\left(\frac{5}{6}\right)^2n * &= \sum_{n=0}^N \left(\frac{25}{36}\right)^n \\ &= \frac{1}{1-\frac{25}{36}} \\ &= \frac{36}{11} \\ \end{align} $

$ E_{\infty} = \infty $.



&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N (\frac{1}{2})^n \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}} \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\ &= \lim_{N\rightarrow \infty} \left(\frac{2-\frac{1}{2^N}}{2N+1} \right) \\ &= \frac{2}{\infty}\\ &= 0 \\


$ P_{\infty} = 1 $

Conclusion:

Therefore, $ E_{\infty} = \infty $, $ P_{\infty} = 1 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood