Line 1: Line 1:
Topic: Energy and Power Computation of a DT geometric signal
+
Topic: Energy and Power Computation of a DT Exponential Signal
 
</center>
 
</center>
 
----
 
----
Compute the energy  <math class="inline">E_\infty</math> and the power  <math class="inline">P_\infty</math> of the following DT signal:
+
Compute the energy  <math class="inline">E_\infty</math> and the power  <math class="inline">P_\infty</math> of this DT signal:
  
  
<math>x[n] = (\frac{5}{6}\right)^n u[n] </math>
+
<math>x[n] = \left(\frac{5}{6}\right)^n u[n] </math>
  
  
Line 19: Line 19:
 
Norm of a signal:
 
Norm of a signal:
 
<math>\begin{align}
 
<math>\begin{align}
|(\frac{5}{6}\right)^n u[n]| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}}
+
|\left(\frac{5}{6}\right)^n u[n]| = \left(\frac{5}{6}\right)^n
&= {{-j^2}\times{e^{3\pi jn - 3\pi jn}}}
+
&= 1
+
 
\end{align}</math>  
 
\end{align}</math>  
  
  
 
<math>\begin{align}
 
<math>\begin{align}
E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}| \\
+
E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |\left(\frac{5}{6}\right)^n}|^2 \\
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\
+
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N \left(\frac{5}{6}\right)^{2n} \\
 
&=\infty. \\
 
&=\infty. \\
 
\end{align}</math>  
 
\end{align}</math>  

Revision as of 15:02, 1 December 2018

Topic: Energy and Power Computation of a DT Exponential Signal </center>


Compute the energy $ E_\infty $ and the power $ P_\infty $ of this DT signal:


$ x[n] = \left(\frac{5}{6}\right)^n u[n] $


$  x[n] = \left\{ \begin{array}{ll}  \left(\frac{5}{6}\right)\right^n & n \geq 0,\\  0 & \text{else}. \end{array} \right.  $

Norm of a signal: $ \begin{align} |\left(\frac{5}{6}\right)^n u[n]| = \left(\frac{5}{6}\right)^n \end{align} $


$ \begin{align} E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |\left(\frac{5}{6}\right)^n}|^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N \left(\frac{5}{6}\right)^{2n} \\ &=\infty. \\ \end{align} $


$ E_{\infty} = \infty $.

$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $


$ P_{\infty} = 1 $

Conclusion:

Therefore, $ E_{\infty} = \infty $, $ P_{\infty} = 1 $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn