Line 5: Line 5:
  
  
<math>x[n]= (\frac{5}{6})u[n] </math>
+
<math>x[n] = (\frac{5}{6}\right)^n u[n] </math>
  
  
Line 11: Line 11:
 
\left\{
 
\left\{
 
\begin{array}{ll}
 
\begin{array}{ll}
  \left(\frac{5}{6}\right)^n & \text{  } n>=0,\\
+
  \left(\frac{5}{6}\right)^n & n \geq 0,\\
 
  0 & \text{else}.
 
  0 & \text{else}.
 
\end{array}
 
\end{array}
Line 19: Line 19:
 
Norm of a signal:
 
Norm of a signal:
 
<math>\begin{align}
 
<math>\begin{align}
|je^{3\pi jn}| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}}
+
|(\frac{5}{6}\right)^n u[n]| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}}
 
&= {{-j^2}\times{e^{3\pi jn - 3\pi jn}}}
 
&= {{-j^2}\times{e^{3\pi jn - 3\pi jn}}}
 
&= 1
 
&= 1

Revision as of 14:49, 1 December 2018

Topic: Energy and Power Computation of a DT geometric signal </center>


Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following DT signal:


$ x[n] = (\frac{5}{6}\right)^n u[n] $


$  x[n] = \left\{ \begin{array}{ll}  \left(\frac{5}{6}\right)^n & n \geq 0,\\  0 & \text{else}. \end{array} \right.  $

Norm of a signal: $ \begin{align} |(\frac{5}{6}\right)^n u[n]| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}} &= {{-j^2}\times{e^{3\pi jn - 3\pi jn}}} &= 1 \end{align} $


$ \begin{align} E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}| \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\ &=\infty. \\ \end{align} $


$ E_{\infty} = \infty $.

$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $


$ P_{\infty} = 1 $

Conclusion:

Therefore, $ E_{\infty} = \infty $, $ P_{\infty} = 1 $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett