Line 16: Line 16:
 
&=\int_{-\infty}^\infty \frac{1+\cos(10t)}{2} dt \\
 
&=\int_{-\infty}^\infty \frac{1+\cos(10t)}{2} dt \\
 
&=\int_{-\infty}^\infty \frac{1}{2} + {\frac{1}{2}}\cos(10t)  dt \\
 
&=\int_{-\infty}^\infty \frac{1}{2} + {\frac{1}{2}}\cos(10t)  dt \\
&= (t + {\frac{1}{10}}\sin(10t)) \Big| ^T _{-T}\\
+
&= (\frac{1}{2}t + {\frac{1}{10}}\sin(10t)) \Big| ^T _{-T}\\
 
&=\infty\\
 
&=\infty\\
  
Line 29: Line 29:
 
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1+\cos(10t)}{2} dt \quad \\
 
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1+\cos(10t)}{2} dt \quad \\
 
& = \lim_{T\rightarrow \infty} {1 \over {2T}} ((t + {\frac{1}{10}}\sin(10t)) \Big| ^T _{-T}  \quad \\
 
& = \lim_{T\rightarrow \infty} {1 \over {2T}} ((t + {\frac{1}{10}}\sin(10t)) \Big| ^T _{-T}  \quad \\
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2}T - \frac{1}{10}(-T) )+ \frac{1}{10} (\sin(10T) - \sin(-10T)) \quad \\
+
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2}T + \frac{1}{10} (\sin(10T) - (\frac{1}{2}(-T) + \sin(-10T)) \quad \\
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (T) \quad \\
+
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (2T) \quad \\
&= \lim_{T\rightarrow \infty} {1 \over {2}} \quad \\
+
&= \frac 1 \quad \\
&= \frac{1}{2} \quad \\
+
 
\end{align}
 
\end{align}
 
</math>
 
</math>
  
 
<math class="inline">P_{\infty} = \frac{1}{2}  </math>.
 
<math class="inline">P_{\infty} = \frac{1}{2}  </math>.

Revision as of 19:34, 1 December 2018

Problem

Compute the energy and the power of the CT sinusoidal signal below:

$ x(t)= \cos (5t) $

Solution

$ \begin{align} \left|\cos(5t)\right|^{2} = |\cos^2(5t)|^2 \\ \cos^2(5t) = \frac{1+\cos(10t)}{2} \end{align} $

$ \begin{align} E_{\infty} &=\int_{-\infty}^\infty |\cos^2(5t)|^2 dt \\ &=\int_{-\infty}^\infty \frac{1+\cos(10t)}{2} dt \\ &=\int_{-\infty}^\infty \frac{1}{2} + {\frac{1}{2}}\cos(10t) dt \\ &= (\frac{1}{2}t + {\frac{1}{10}}\sin(10t)) \Big| ^T _{-T}\\ &=\infty\\ \end{align} $

$ E_{\infty} = \infty $.

$ \begin{align} P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\cos^2(5t)|^2 dt \\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1+\cos(10t)}{2} dt \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} ((t + {\frac{1}{10}}\sin(10t)) \Big| ^T _{-T} \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2}T + \frac{1}{10} (\sin(10T) - (\frac{1}{2}(-T) + \sin(-10T)) \quad \\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (2T) \quad \\ &= \frac 1 \quad \\ \end{align} $

$ P_{\infty} = \frac{1}{2} $.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang