(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Compute the energy and the power of the CT sinusoidal signal below:
 
Compute the energy and the power of the CT sinusoidal signal below:
 +
  
 
<math>x(t)= \cos (5t)</math>
 
<math>x(t)= \cos (5t)</math>
 +
 +
 +
  
 
==Solution==
 
==Solution==
  
 
<math>\begin{align}
 
<math>\begin{align}
\left|\cos(5t)\right|^{2} = \cos^2(5t) \\
+
\left|\cos(5t)\right|^{2} = |\cos^2(5t)|^2 \\
\cos^2(5t) = \frac{1-\cos(10t)}{2}
+
\cos^2(5t) = \frac{1+\cos(10t)}{2}
 
\end{align}</math>
 
\end{align}</math>
 +
 +
  
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
E_{\infty} &=\int_{-\infty}^\infty \cos^2(5t) dt
+
E_{\infty} &=\int_{-\infty}^\infty |\cos^2(5t)|^2 dt \\
&=\int_{-\infty}^\infty \frac{1-\cos(10t)}{2} dt
+
&=\int_{-\infty}^\infty \frac{1+\cos(10t)}{2} dt \\
 +
&=\int_{-\infty}^\infty \frac{1}{2} + {\frac{1}{2}}\cos(10t)  dt \\
 +
&= (\frac{1}{2}t + {\frac{1}{10}}\sin(10t)) \Big| ^T _{-T}\\
 +
&=\infty\\
 +
 
 
\end{align}
 
\end{align}
 
</math>
 
</math>
 +
 +
<math class="inline">E_{\infty} = \infty  </math>.
 +
 +
 +
 +
 +
<math>
 +
\begin{align}
 +
P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\cos^2(5t)|^2 dt \\
 +
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1+\cos(10t)}{2} dt \quad \\
 +
& = \lim_{T\rightarrow \infty} {1 \over {2T}} ((t + {\frac{1}{10}}\sin(10t)) \Big| ^T _{-T}  \quad \\
 +
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2}T + \frac{1}{10} (\sin(10T)) - ((\frac{1}{2}(-T) + \sin(-10T)) \quad \\
 +
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (2T) \\
 +
&= 1 \\
 +
\end{align}
 +
</math>
 +
 +
<math class="inline">P_{\infty} = 1  </math>.
 +
 +
 +
 +
 +
 +
Conclusion:
 +
 +
<math class="inline">E_{\infty} = \infty </math>,
 +
 +
<math class="inline">P_{\infty} = 1  </math>.

Latest revision as of 19:48, 1 December 2018

Problem

Compute the energy and the power of the CT sinusoidal signal below:


$ x(t)= \cos (5t) $



Solution

$ \begin{align} \left|\cos(5t)\right|^{2} = |\cos^2(5t)|^2 \\ \cos^2(5t) = \frac{1+\cos(10t)}{2} \end{align} $


$ \begin{align} E_{\infty} &=\int_{-\infty}^\infty |\cos^2(5t)|^2 dt \\ &=\int_{-\infty}^\infty \frac{1+\cos(10t)}{2} dt \\ &=\int_{-\infty}^\infty \frac{1}{2} + {\frac{1}{2}}\cos(10t) dt \\ &= (\frac{1}{2}t + {\frac{1}{10}}\sin(10t)) \Big| ^T _{-T}\\ &=\infty\\ \end{align} $

$ E_{\infty} = \infty $.



$ \begin{align} P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\cos^2(5t)|^2 dt \\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1+\cos(10t)}{2} dt \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} ((t + {\frac{1}{10}}\sin(10t)) \Big| ^T _{-T} \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2}T + \frac{1}{10} (\sin(10T)) - ((\frac{1}{2}(-T) + \sin(-10T)) \quad \\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (2T) \\ &= 1 \\ \end{align} $

$ P_{\infty} = 1 $.



Conclusion:

$ E_{\infty} = \infty $,

$ P_{\infty} = 1 $.

Alumni Liaison

EISL lab graduate

Mu Qiao