Line 16: Line 16:
  
 
<math>\begin{align}
 
<math>\begin{align}
E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}| \\
+
E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\
 
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\
 
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\
 
&=\infty. \\
 
&=\infty. \\

Revision as of 15:00, 1 December 2018

Topic: Energy and Power Computation of a DT Exponential Signal </center>


Compute the energy $ E_\infty $ and the power $ P_\infty $ of the DT exponential signal below:


$ x[n]= e^{-j3\pi n} $

Norm of a signal: $ \begin{align} |je^{3\pi jn}| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}} &= {{-j^2}\times{e^{3\pi jn - 3\pi jn}}} &= 1 \end{align} $


$ \begin{align} E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\ &=\infty. \\ \end{align} $


$ E_{\infty} = \infty $.

$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $


$ P_{\infty} = 1 $

Conclusion:

Therefore, $ E_{\infty} = \infty $, $ P_{\infty} = 1 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett