(New page: Inverse Z-transform <math>x[n]= \frac{1}{2\prod j} \oint_C X(z) z^{n-1} dz \ </math> <math>= \sum_ poles a_i of X(z) z^{n-1} \...)
 
Line 9: Line 9:
 
So inverting X(z) involves power series
 
So inverting X(z) involves power series
  
<math>f(x)= \sum_{n =-\infty}^{\infty}  frac {f^{n} x_0 (x-x_0)^{n} {n!} \ </math>  
+
<math> f(x)= \sum_{n =-\infty}^{\infty}  frac {f^{n} x_0 (x-x_0)^{n} {n!} \ </math>  
 
   
 
   
 
<math>\frac{1}{1-x} = \sum_{n =-\infty}^{\infty} x^{n} \ </math>  , geometric series when |x|< 1
 
<math>\frac{1}{1-x} = \sum_{n =-\infty}^{\infty} x^{n} \ </math>  , geometric series when |x|< 1

Revision as of 08:43, 23 September 2009

                                                 Inverse Z-transform

$ x[n]= \frac{1}{2\prod j} \oint_C X(z) z^{n-1} dz \ $

         $ = \sum_ poles a_i of X(z) z^{n-1} \  $ Residue $ X(z) z^{n-1} \  $
      
          $ = \sum_ poles a_i of X(z) z^{n-1} \  $ Coefficient of degree(-1) term  in the power expansion of $ X(z) z^{n-1} \  $ about $ a_i $

So inverting X(z) involves power series

$ f(x)= \sum_{n =-\infty}^{\infty} frac {f^{n} x_0 (x-x_0)^{n} {n!} \ $

$ \frac{1}{1-x} = \sum_{n =-\infty}^{\infty} x^{n} \ $ , geometric series when |x|< 1

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch