Line 2: Line 2:
  
 
Let ''a'' belong to a group ''G'' and let |''a''| be finite.  Let <math>\phi_a</math> be the automorphism of ''G'' given by <math>\phi_a (x) = axa^{-1}</math>.  Show that |<math>\phi_a</math>| divides |''a''|.  Exhibit an element ''a'' from a group for which 1<|<math>\phi_a</math>|<|''a''|.
 
Let ''a'' belong to a group ''G'' and let |''a''| be finite.  Let <math>\phi_a</math> be the automorphism of ''G'' given by <math>\phi_a (x) = axa^{-1}</math>.  Show that |<math>\phi_a</math>| divides |''a''|.  Exhibit an element ''a'' from a group for which 1<|<math>\phi_a</math>|<|''a''|.
 +
 +
----
 +
By the properties of isomorphisms, we know that <math>\scriptstyle\phi_\alpha\phi_\beta\ =\ \phi_{\alpha\beta}</math>. Inductively then we know that <math>\scriptstyle(\phi_\alpha)^k\ =\ \phi_{\alpha^k}</math>. Let <math>\scriptstyle\mid a\mid\ =\ n</math>. Then <math>\scriptstyle a^n\ =\ e</math>, and <math>\scriptstyle\phi_{a^n}\ =\ \phi_e</math>. So, <math>\scriptstyle(\phi_a)^n\ =\ \phi_{a^n}\ =\ \phi_e</math>, and <math>\scriptstyle\mid\phi_a\mid\ \textstyle\mid\scriptstyle\ n</math>.
 +
:--[[User:Narupley|Nick Rupley]] 12:15, 11 February 2009 (UTC)

Revision as of 08:15, 11 February 2009


Let a belong to a group G and let |a| be finite. Let $ \phi_a $ be the automorphism of G given by $ \phi_a (x) = axa^{-1} $. Show that |$ \phi_a $| divides |a|. Exhibit an element a from a group for which 1<|$ \phi_a $|<|a|.


By the properties of isomorphisms, we know that $ \scriptstyle\phi_\alpha\phi_\beta\ =\ \phi_{\alpha\beta} $. Inductively then we know that $ \scriptstyle(\phi_\alpha)^k\ =\ \phi_{\alpha^k} $. Let $ \scriptstyle\mid a\mid\ =\ n $. Then $ \scriptstyle a^n\ =\ e $, and $ \scriptstyle\phi_{a^n}\ =\ \phi_e $. So, $ \scriptstyle(\phi_a)^n\ =\ \phi_{a^n}\ =\ \phi_e $, and $ \scriptstyle\mid\phi_a\mid\ \textstyle\mid\scriptstyle\ n $.

--Nick Rupley 12:15, 11 February 2009 (UTC)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood