Line 8: Line 8:
  
 
----
 
----
Let <math>|a|=n</math>. Then <math>\phi_a^n(x)=a^nxa^{-n}=x</math>. Does this mean that <math>|\phi_a|=n</math> as well?
+
Let <math>|a|=n</math>. Then <math>\phi_a^n(x)=a^nxa^{-n}=x</math>. Does this mean that <math>|\phi_a|=n</math> as well? Can someone explain what the order of an isomorphism is?

Revision as of 10:45, 11 February 2009


Let a belong to a group G and let |a| be finite. Let $ \phi_a $ be the automorphism of G given by $ \phi_a (x) = axa^{-1} $. Show that |$ \phi_a $| divides |a|. Exhibit an element a from a group for which 1<|$ \phi_a $|<|a|.


By the properties of isomorphisms, we know that $ \scriptstyle\phi_\alpha\phi_\beta\ =\ \phi_{\alpha\beta} $. Inductively then we know that $ \scriptstyle(\phi_\alpha)^k\ =\ \phi_{\alpha^k} $. Let $ \scriptstyle\mid a\mid\ =\ n $. Then $ \scriptstyle a^n\ =\ e $, and $ \scriptstyle\phi_{a^n}\ =\ \phi_e $. So, $ \scriptstyle(\phi_a)^n\ =\ \phi_{a^n}\ =\ \phi_e $, and $ \scriptstyle\mid\phi_a\mid\ \textstyle\mid\scriptstyle\ n $.

--Nick Rupley 12:15, 11 February 2009 (UTC)

Let $ |a|=n $. Then $ \phi_a^n(x)=a^nxa^{-n}=x $. Does this mean that $ |\phi_a|=n $ as well? Can someone explain what the order of an isomorphism is?

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang