(2 intermediate revisions by 2 users not shown)
Line 11: Line 11:
  
 
I'm not sure why this problem took me awhile to think through...something about doing things algebraically with representations of the order didn't seem to fit well with me...but I think this is definitely a good approach to the problem
 
I'm not sure why this problem took me awhile to think through...something about doing things algebraically with representations of the order didn't seem to fit well with me...but I think this is definitely a good approach to the problem
 +
 +
-----
 +
 +
Let <math>ord(g)=k</math>. So <math>g^k = 1</math> and we divide by <math>g^k</math> to get <math>1=g^{-k}</math>. Can we just say <math>1=(g^{-1})^k</math>, and therefore <math>ord(g^{-1})=k=ord(g)</math>?
 +
 +
----
 +
Here's another way to think about it. Assume <math>\scriptstyle\mid a\mid=\sigma</math>. Then <math>\scriptstyle a^\sigma = e</math>.
 +
 +
<math>\textstyle\Rightarrow\scriptstyle\ \underbrace{\scriptstyle aaa\cdots aaa}_{\textstyle\sigma}\ =\ e\ \textstyle\Rightarrow\scriptstyle\ \underbrace{\scriptstyle aaa\cdots aaa}_{\textstyle\sigma}\ \cdot\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma}\ =\ e\ \cdot\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma}</math>
 +
 +
<math>\textstyle\Rightarrow\scriptstyle\ \underbrace{\scriptstyle aaa\cdots aa}_{\textstyle\sigma-1}\ \cdot\ e\ \cdot\ \underbrace{\scriptstyle a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma-1}\ =\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma}</math>
 +
 +
<math>\textstyle\Rightarrow\scriptstyle\ \underbrace{\scriptstyle aaa\cdots a}_{\textstyle\sigma-2}\ \cdot\ e\ \cdot\ e\ \cdot\ \underbrace{\scriptstyle a^{-1}\cdots a^{-1}}_{\textstyle\sigma-2}\ =\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma}</math>
 +
 +
This reduces iteratively until we reach:
 +
 +
<math>\scriptstyle\underbrace{\scriptstyle eee\cdots eee}_{\textstyle\sigma}\ =\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma}</math>
 +
 +
<math>\textstyle\Rightarrow\scriptstyle\ e\ =\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma}\ =\ (a^{-1})^{\sigma}</math>
 +
 +
Therefore, <math>\scriptstyle\mid a^{-1}\mid\ =\ \sigma</math>. <math>\scriptstyle\Box</math>
 +
:--[[User:Narupley|Nick Rupley]] 22:04, 4 February 2009 (UTC)
 +
 +
----
 +
I agree with Nick's method. That way you aren't assuming which operation the group is using.
 +
 +
--[[User:Davis29|Davis29]] 08:49, 5 February 2009 (UTC)

Latest revision as of 04:49, 5 February 2009


If g^k=1 then dividing by g^k you get g^(-k)=1. So ord(1/g) is less than or equal to ord(g). This goes both ways, so equality must hold.

--Awika 14:42, 30 January 2009 (UTC)

Question about Chapter 3, Problem 4

I'm not sure why this problem took me awhile to think through...something about doing things algebraically with representations of the order didn't seem to fit well with me...but I think this is definitely a good approach to the problem


Let $ ord(g)=k $. So $ g^k = 1 $ and we divide by $ g^k $ to get $ 1=g^{-k} $. Can we just say $ 1=(g^{-1})^k $, and therefore $ ord(g^{-1})=k=ord(g) $?


Here's another way to think about it. Assume $ \scriptstyle\mid a\mid=\sigma $. Then $ \scriptstyle a^\sigma = e $.

$ \textstyle\Rightarrow\scriptstyle\ \underbrace{\scriptstyle aaa\cdots aaa}_{\textstyle\sigma}\ =\ e\ \textstyle\Rightarrow\scriptstyle\ \underbrace{\scriptstyle aaa\cdots aaa}_{\textstyle\sigma}\ \cdot\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma}\ =\ e\ \cdot\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma} $

$ \textstyle\Rightarrow\scriptstyle\ \underbrace{\scriptstyle aaa\cdots aa}_{\textstyle\sigma-1}\ \cdot\ e\ \cdot\ \underbrace{\scriptstyle a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma-1}\ =\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma} $

$ \textstyle\Rightarrow\scriptstyle\ \underbrace{\scriptstyle aaa\cdots a}_{\textstyle\sigma-2}\ \cdot\ e\ \cdot\ e\ \cdot\ \underbrace{\scriptstyle a^{-1}\cdots a^{-1}}_{\textstyle\sigma-2}\ =\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma} $

This reduces iteratively until we reach:

$ \scriptstyle\underbrace{\scriptstyle eee\cdots eee}_{\textstyle\sigma}\ =\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma} $

$ \textstyle\Rightarrow\scriptstyle\ e\ =\ \underbrace{\scriptstyle a^{-1}a^{-1}\cdots a^{-1}a^{-1}}_{\textstyle\sigma}\ =\ (a^{-1})^{\sigma} $

Therefore, $ \scriptstyle\mid a^{-1}\mid\ =\ \sigma $. $ \scriptstyle\Box $

--Nick Rupley 22:04, 4 February 2009 (UTC)

I agree with Nick's method. That way you aren't assuming which operation the group is using.

--Davis29 08:49, 5 February 2009 (UTC)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett