(New page: Corollary 3 of THM 16.2 : "A polynomial of degree ''n'' over a field has at most ''n'' zeros, counting multiplicity" Fields and an finite integral domains are one and the same. (THM 13.2)...)
 
 
(One intermediate revision by one other user not shown)
Line 9: Line 9:
 
''Not sure if this is sound.  Comments?''     
 
''Not sure if this is sound.  Comments?''     
 
--[[User:Bcaulkin|Bcaulkin]] 21:27, 1 April 2009 (UTC)
 
--[[User:Bcaulkin|Bcaulkin]] 21:27, 1 April 2009 (UTC)
 +
 +
 +
So, I'm not entirely sure what angle the question is going at, but I think taking x^3 in Z mod 8Z will work as an example showing that the corollary does not hold.  --[[User:Jcromer|Jcromer]] 22:19, 1 April 2009 (UTC)
 +
 +
----
 +
Just showing a counterexample will not suffice, as the question asks to prove Corollary 3 false for ''any'' commutative ring that has a zero divisor.
 +
 +
Consider <math>\scriptstyle f(x)</math> and <math>\scriptstyle g(x)</math> such that:
 +
<math>\scriptstyle f(x)\ =\ a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0</math>,
 +
<math>\scriptstyle g(x)\ =\ b_mx^m+b_{m-1}x^{m-1}+\ldots+b_1x+b_0</math>,
 +
and both <math>\scriptstyle f(x)</math> and <math>\scriptstyle g(x)</math> are over a commutative ring <math>\scriptstyle R</math> with zero-divisors <math>\scriptstyle a_0</math> and <math>\scriptstyle b_0</math>. Say the number of zeroes of <math>\scriptstyle f(x)</math> is <math>\scriptstyle n</math> and the number of zeroes of <math>\scriptstyle g(x)</math> is <math>\scriptstyle m</math>. Note that 0 is not a root of either <math>\scriptstyle f(x)</math> or <math>\scriptstyle g(x)</math> because <math>\scriptstyle a_0</math> and <math>\scriptstyle b_0</math> are nonzero (by the definition of a zero-divisor). Now consider
 +
 +
<math>\scriptstyle f(x)\cdot g(x)\ =\ c_{m+n}x^{m+n}+c{m+n-1}x^{m+n-1}+\ldots+c_1x+c_0</math>, where
 +
<math>\scriptstyle c_k\ =\ a_kb_0+a_{k-1}b_1+\ldots+a_1b_{k-1}+a_0b_k</math>.
 +
 +
Say the number of zeroes of <math>\scriptstyle f(x)\cdot g(x)</math> is <math>\scriptstyle t</math>. Clearly <math>\scriptstyle t\ \geq\ m+n</math>, because any root of either <math>\scriptstyle f(x)</math> or <math>\scriptstyle g(x)</math> is a root of <math>\scriptstyle f(x)\cdot g(x)</math>. But since <math>\scriptstyle c_0\ =\ a_0b_0\ =\ 0</math>,
 +
 +
<math>\scriptstyle f(x)\cdot g(x)\ =\ c_{m+n}x^{m+n}+c_{m+n-1}x^{m+n-1}+\ldots+c_1x\ =\ x(c_{m+n}x^{m+n-1}+c_{m+n-1}x^{m+n-2}+\ldots+c_1)</math>.
 +
 +
Now, 0 is a zero of <math>\scriptstyle f(x)\cdot g(x)</math>, and <math>\scriptstyle t</math> must be at least <math>\scriptstyle m+n+1</math>. However, the degree of <math>\scriptstyle f(x)\cdot g(x)</math> is only m+n! Corollary 3 therefore cannot hold.  <math>\scriptstyle\Box</math>
 +
:--[[User:Narupley|Nick Rupley]] 03:35, 2 April 2009 (UTC)

Latest revision as of 23:35, 1 April 2009

Corollary 3 of THM 16.2 : "A polynomial of degree n over a field has at most n zeros, counting multiplicity"

Fields and an finite integral domains are one and the same. (THM 13.2)

Finite integral domains are commutative rings with unity and no zero-divisors (Definition of integral domain)

So, if the commutative ring has zero divisors, it cannot be a field, thus no polynomials may over it, thus Corollary 3 is false for any ring with zero-divisors.

Not sure if this is sound. Comments? --Bcaulkin 21:27, 1 April 2009 (UTC)


So, I'm not entirely sure what angle the question is going at, but I think taking x^3 in Z mod 8Z will work as an example showing that the corollary does not hold. --Jcromer 22:19, 1 April 2009 (UTC)


Just showing a counterexample will not suffice, as the question asks to prove Corollary 3 false for any commutative ring that has a zero divisor.

Consider $ \scriptstyle f(x) $ and $ \scriptstyle g(x) $ such that: $ \scriptstyle f(x)\ =\ a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0 $, $ \scriptstyle g(x)\ =\ b_mx^m+b_{m-1}x^{m-1}+\ldots+b_1x+b_0 $, and both $ \scriptstyle f(x) $ and $ \scriptstyle g(x) $ are over a commutative ring $ \scriptstyle R $ with zero-divisors $ \scriptstyle a_0 $ and $ \scriptstyle b_0 $. Say the number of zeroes of $ \scriptstyle f(x) $ is $ \scriptstyle n $ and the number of zeroes of $ \scriptstyle g(x) $ is $ \scriptstyle m $. Note that 0 is not a root of either $ \scriptstyle f(x) $ or $ \scriptstyle g(x) $ because $ \scriptstyle a_0 $ and $ \scriptstyle b_0 $ are nonzero (by the definition of a zero-divisor). Now consider

$ \scriptstyle f(x)\cdot g(x)\ =\ c_{m+n}x^{m+n}+c{m+n-1}x^{m+n-1}+\ldots+c_1x+c_0 $, where $ \scriptstyle c_k\ =\ a_kb_0+a_{k-1}b_1+\ldots+a_1b_{k-1}+a_0b_k $.

Say the number of zeroes of $ \scriptstyle f(x)\cdot g(x) $ is $ \scriptstyle t $. Clearly $ \scriptstyle t\ \geq\ m+n $, because any root of either $ \scriptstyle f(x) $ or $ \scriptstyle g(x) $ is a root of $ \scriptstyle f(x)\cdot g(x) $. But since $ \scriptstyle c_0\ =\ a_0b_0\ =\ 0 $,

$ \scriptstyle f(x)\cdot g(x)\ =\ c_{m+n}x^{m+n}+c_{m+n-1}x^{m+n-1}+\ldots+c_1x\ =\ x(c_{m+n}x^{m+n-1}+c_{m+n-1}x^{m+n-2}+\ldots+c_1) $.

Now, 0 is a zero of $ \scriptstyle f(x)\cdot g(x) $, and $ \scriptstyle t $ must be at least $ \scriptstyle m+n+1 $. However, the degree of $ \scriptstyle f(x)\cdot g(x) $ is only m+n! Corollary 3 therefore cannot hold. $ \scriptstyle\Box $

--Nick Rupley 03:35, 2 April 2009 (UTC)

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett