Line 1: Line 1:
 
I got (1 - 2x) as the multiplicitave inverse, since that multiplied by (2x + 1) is 1. ... which i guess is the same as the original function.
 
I got (1 - 2x) as the multiplicitave inverse, since that multiplied by (2x + 1) is 1. ... which i guess is the same as the original function.
 
--[[User:Jcromer|Jcromer]] 20:50, 1 April 2009 (UTC)
 
--[[User:Jcromer|Jcromer]] 20:50, 1 April 2009 (UTC)
 +
 +
----
 +
The unity of <math>\scriptstyle Z_4[x]</math> is 1, so we're looking for some polynomial <math>\scriptstyle g(x)</math> such that <math>\scriptstyle(2x+1)\cdot g(x)\ =\ 1</math>. So, just divide 1 by <math>\scriptstyle(2x+1)</math> modulo 4:
 +
 +
    <math>\scriptstyle1+2x</math>
 +
<math>\scriptstyle1+2x)\overline{1+0x+0x^2}</math>
 +
    <math>\scriptstyle-\underline{1+2x}</math>
 +
      <math>\scriptstyle2x+0x^2</math>
 +
      <math>\scriptstyle-\underline{2x+0x^2}</math>
 +
          <math>\scriptstyle0</math>
 +
 +
From this it's clear that <math>\scriptstyle1\ =\ (2x+1)\cdot(2x+1)</math>, so the multiplicative inverse of <math>\scriptstyle(2x+1)</math> is itself.
 +
:--[[User:Narupley|Nick Rupley]] 01:44, 2 April 2009 (UTC)

Latest revision as of 21:44, 1 April 2009

I got (1 - 2x) as the multiplicitave inverse, since that multiplied by (2x + 1) is 1. ... which i guess is the same as the original function. --Jcromer 20:50, 1 April 2009 (UTC)


The unity of $ \scriptstyle Z_4[x] $ is 1, so we're looking for some polynomial $ \scriptstyle g(x) $ such that $ \scriptstyle(2x+1)\cdot g(x)\ =\ 1 $. So, just divide 1 by $ \scriptstyle(2x+1) $ modulo 4:

    $ \scriptstyle1+2x $

$ \scriptstyle1+2x)\overline{1+0x+0x^2} $

   $ \scriptstyle-\underline{1+2x} $
      $ \scriptstyle2x+0x^2 $
     $ \scriptstyle-\underline{2x+0x^2} $
         $ \scriptstyle0 $

From this it's clear that $ \scriptstyle1\ =\ (2x+1)\cdot(2x+1) $, so the multiplicative inverse of $ \scriptstyle(2x+1) $ is itself.

--Nick Rupley 01:44, 2 April 2009 (UTC)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett