(21 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Fourier Transform of delta functions
 
Fourier Transform of delta functions
 +
 +
1.
  
 
<math> x(t) = \delta (t+1) + \delta (t-1) </math>
 
<math> x(t) = \delta (t+1) + \delta (t-1) </math>
  
<math> X(\omega) = \int{\infty}_{-\infty} </math>
+
<math> X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt </math>
 +
 
 +
<math> X(\omega) = e^{j \omega}+ e^{-j \omega} = \frac{1}{2} (e^ {j \omega} + e^ {-j \omega})^2 </math>
 +
 
 +
<math> X(\omega) = 2cos(\omega) </math>
 +
 
 +
2.
 +
 
 +
<math> x(t) = \frac{d}{dt} {u(-2-t) + u(t-2)} </math>
 +
 
 +
<math> X(\omega) = \int_{-\infty}^{\infty} \frac{d}{dt} {u(-2-t) + u(t-2)} e^{-j \omega t} dt </math>
 +
 
 +
<math> X(\omega) = \int_{-\infty}^{\infty} \delta (-2-t) e^{-j \omega t} dt + \int_{-\infty}^{\infty} \delta (t-2) e^{-j \omega t} dt</math>
 +
 
 +
<math> X(\omega) = -e^{2j \omega} + e^{-2j \omega} </math>
 +
 
 +
<math> X(\omega) = -2j (\frac{e^{2j \omega} - e^{-2j \omega}}{2j}) </math>
 +
 
 +
<math> X(\omega) = -2j sin(2 \omega) </math>

Latest revision as of 18:26, 24 October 2008

Fourier Transform of delta functions

1.

$ x(t) = \delta (t+1) + \delta (t-1) $

$ X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt $

$ X(\omega) = e^{j \omega}+ e^{-j \omega} = \frac{1}{2} (e^ {j \omega} + e^ {-j \omega})^2 $

$ X(\omega) = 2cos(\omega) $

2.

$ x(t) = \frac{d}{dt} {u(-2-t) + u(t-2)} $

$ X(\omega) = \int_{-\infty}^{\infty} \frac{d}{dt} {u(-2-t) + u(t-2)} e^{-j \omega t} dt $

$ X(\omega) = \int_{-\infty}^{\infty} \delta (-2-t) e^{-j \omega t} dt + \int_{-\infty}^{\infty} \delta (t-2) e^{-j \omega t} dt $

$ X(\omega) = -e^{2j \omega} + e^{-2j \omega} $

$ X(\omega) = -2j (\frac{e^{2j \omega} - e^{-2j \omega}}{2j}) $

$ X(\omega) = -2j sin(2 \omega) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett