Line 1: Line 1:
 
<math>x(t)=4\cos(t)+4\jmath\sin(t)</math>
 
<math>x(t)=4\cos(t)+4\jmath\sin(t)</math>
  
<math>|x(t)|=|4\cos(t)+4\jmath\sin(t)|=\sqrt{16\cos^2(t)+16\sin^2(t)}=4</math>  
+
<math>|x(t)|=|4\cos(t)+4\jmath\sin(t)|</math>
 +
 
 +
  <math>|x(t)|=\sqrt{16\cos^2(t)+16\sin^2(t)}</math>
 +
 
 +
  <math>|x(t)|=4</math>
  
  Compute <math>E\infty</math>
+
Compute <math>E\infty</math>
  
    <math>E\infty=\int_{-\infty}^\infty |4|^2\,dt=16t|_{-\infty}^\infty</math>
+
  <math>E\infty=\int_{-\infty}^\infty |4|^2\,dt=16t|_{-\infty}^\infty</math>
  
    <math>E\infty=\infty</math>
+
  <math>E\infty=\infty</math>
  
  Compute <math>P\infty</math>
+
Compute <math>P\infty</math>
  
    <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|4|^2dt</math>
+
  <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|4|^2dt</math>
  
    <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16|_{-T}^T</math>
+
  <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16|_{-T}^T</math>
  
    <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16(T-(-T))</math>
+
  <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16(T-(-T))</math>
  
    <math>P\infty=lim_{T \to \infty} \ 16</math>
+
  <math>P\infty=lim_{T \to \infty} \ 16</math>
  
    <math>P\infty=16</math>
+
  <math>P\infty=16</math>

Revision as of 18:49, 21 June 2009

$ x(t)=4\cos(t)+4\jmath\sin(t) $

$ |x(t)|=|4\cos(t)+4\jmath\sin(t)| $

 $ |x(t)|=\sqrt{16\cos^2(t)+16\sin^2(t)} $
 
 $ |x(t)|=4 $

Compute $ E\infty $

 $ E\infty=\int_{-\infty}^\infty |4|^2\,dt=16t|_{-\infty}^\infty $
 $ E\infty=\infty $

Compute $ P\infty $

 $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|4|^2dt $
 $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16|_{-T}^T $
 $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16(T-(-T)) $
 $ P\infty=lim_{T \to \infty} \ 16 $
 $ P\infty=16 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett