Line 1: Line 1:
 
<math>x(t)=4\cos(t)+4\jmath\sin(t)</math>
 
<math>x(t)=4\cos(t)+4\jmath\sin(t)</math>
 
----
 
----
Compute <math>E\infty</math>
 
  
<math>|x(t)|=|4\cos(t)+4\jmath\sin(t)|</math>
+
<math>|x(t)|=|4\cos(t)+4\jmath\sin(t)|</math>
 +
 
 +
  Compute <math>E\infty</math>
 
    
 
    
 
     <math>E\infty=\sqrt{16\cos^2(t)+16\sin^2(t)}=4</math>
 
     <math>E\infty=\sqrt{16\cos^2(t)+16\sin^2(t)}=4</math>
Line 11: Line 12:
 
     <math>E\infty=\infty</math>
 
     <math>E\infty=\infty</math>
  
Compute <math>P\infty</math>
+
  Compute <math>P\infty</math>
  
 
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|4|^2dt</math>
 
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|4|^2dt</math>

Revision as of 18:40, 21 June 2009

$ x(t)=4\cos(t)+4\jmath\sin(t) $


$ |x(t)|=|4\cos(t)+4\jmath\sin(t)| $

 Compute $ E\infty $
 
   $ E\infty=\sqrt{16\cos^2(t)+16\sin^2(t)}=4 $
   $ E\infty=\int_{-\infty}^\infty |4|^2\,dt=16t|_{-\infty}^\infty $
   $ E\infty=\infty $
 Compute $ P\infty $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|4|^2dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16|_{-T}^T $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16(T-(-T)) $
   $ P\infty=lim_{T \to \infty} \ 16 $
   $ P\infty=16 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood