(New page: <math>x(t)=4\cos(t)+4\jmath\sin(t)</math> ---- Compute <math>E\infty</math> <math>|x(t)|=|4\cos(t)+4\jmath\sin(t)|=\sqrt{16\cos^2(t)+16\sin^2(t)}=4</math> <math>E\infty=\int_{-\infty}...)
 
Line 2: Line 2:
 
----
 
----
 
Compute <math>E\infty</math>
 
Compute <math>E\infty</math>
 +
 
<math>|x(t)|=|4\cos(t)+4\jmath\sin(t)|=\sqrt{16\cos^2(t)+16\sin^2(t)}=4</math>
 
<math>|x(t)|=|4\cos(t)+4\jmath\sin(t)|=\sqrt{16\cos^2(t)+16\sin^2(t)}=4</math>
  
Line 7: Line 8:
  
 
     <math>E\infty=\infty</math>
 
     <math>E\infty=\infty</math>
 +
 
Compute <math>P\infty</math>
 
Compute <math>P\infty</math>
 +
 
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|4|^2dt</math>
 
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|4|^2dt</math>
  

Revision as of 18:35, 21 June 2009

$ x(t)=4\cos(t)+4\jmath\sin(t) $


Compute $ E\infty $

$ |x(t)|=|4\cos(t)+4\jmath\sin(t)|=\sqrt{16\cos^2(t)+16\sin^2(t)}=4 $

   $ E\infty=\int_{-\infty}^\infty |4|^2\,dt=16t|_{-\infty}^\infty $
   $ E\infty=\infty $

Compute $ P\infty $

   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|4|^2dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16|_{-T}^T $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16(T-(-T)) $
   $ P\infty=lim_{T \to \infty} \ 16 $
   $ P\infty=16 $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett