(fixing mistake)
 
Line 1: Line 1:
<math>x(t)=\sqrt(2t)u(t)</math>
+
[[Category:energy]]
 +
[[Category:signal]]
 +
[[Category:ECE]]
 +
[[Category:ECE301]]
 +
[[Category:practice problem]]
  
 +
==Problem==
 +
Calculate the energy <math>E_\infty</math> and the average power <math>P_\infty</math> for the CT signal
 +
<math>x(t)=\sqrt{2t}u(t)</math>
 
----
 
----
 
+
==Solution 1==
 
Compute <math>E\infty</math>
 
Compute <math>E\infty</math>
  
 
<math>E\infty=\int_{-\infty}^\infty |x(t)|^2dt</math>
 
<math>E\infty=\int_{-\infty}^\infty |x(t)|^2dt</math>
  
<math>E\infty=\int_{-\infty}^\infty |\sqrt(2t)u(t)|^2dt</math>
+
<math>E\infty=\int_{-\infty}^\infty |\sqrt{2t}u(t)|^2dt</math> <span style="color:blue"> (*) </span>
  
<math>E\infty=\int_{-\infty}^\infty |2tu(t)|dt</math>
+
<math>E\infty=\int_{-\infty}^\infty |2tu(t)|dt</math> <span style="color:blue"> (*) </span>
  
<math>E\infty=\int_{0}^\infty 2tdt</math>
+
<math>E\infty=\int_{0}^\infty 2tdt</math> <span style="color:blue"> (*) </span>
  
 
<math>E\infty=t^2|_{0}^{\infty}</math>
 
<math>E\infty=t^2|_{0}^{\infty}</math>
Line 19: Line 26:
 
<math>E\infty=\infty</math>
 
<math>E\infty=\infty</math>
  
----
 
  
 
Compute <math>P\infty</math>
 
Compute <math>P\infty</math>
Line 31: Line 37:
 
<math>P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{0}^T2tdt</math>
 
<math>P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{0}^T2tdt</math>
  
<math>P\infty=\lim_{T \to \infty}\frac{|t^2|_{0}^{T}}{2*T}</math>
+
<math>P\infty=\lim_{T \to \infty}\frac{|t^2|_{0}^{T}}{2*T}</math> <span style="color:violet"> (*)</span>
  
 
<math>P\infty=\lim_{T \to \infty}\frac{T^2-0}{2*T}</math>
 
<math>P\infty=\lim_{T \to \infty}\frac{T^2-0}{2*T}</math>
Line 39: Line 45:
 
<math>P\infty=\infty</math>
 
<math>P\infty=\infty</math>
  
 +
*<span style="color:green"> It would be better not to use the start symbol to denote multiplication in this context. The star symbol in electrical engineering is usually denoting convolution. </span>
 +
*<span style="color:blue"> *This is probably not the best way to order these steps, but it worked out at the end. </span>
 +
*<span style="color:violet"> *You should not have the absolute values at this point.</span>
 +
----
 +
==Solution 2==
 +
<math>E_\infty=\int_{-\infty}^\infty |x(t)|^2d=\int_{-\infty}^\infty |\sqrt{2t}u(t)|^2dt =\int_{0}^\infty | \sqrt{2t}|^2dt =\int_{0}^\infty 2tdt= \infty</math>
  
-Tylor Thompson
+
<math>P\infty=\lim_{T \to \infty}\frac{1}{2T}\int_{-T}^T |x(t)|^2dt =\lim_{T \to \infty}\frac{1}{2T}\int_{-T}^T \left| \sqrt{2t} u(t) \right|^2dt =\lim_{T \to \infty}\frac{1}{2T}\int_{0}^T 2t dt= \lim_{T \to \infty}\frac{ t^2|_{0}^{T}}{2 T}=\lim_{T \to \infty}\frac{T^2-0}{2T}= \infty</math>
 +
 
 +
<span style="color:green"> Short and sweet! </span>
 +
----
 +
[[Signal_energy_CT|Back to CT signal energy page]]

Latest revision as of 17:20, 25 February 2015


Problem

Calculate the energy $ E_\infty $ and the average power $ P_\infty $ for the CT signal $ x(t)=\sqrt{2t}u(t) $


Solution 1

Compute $ E\infty $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |\sqrt{2t}u(t)|^2dt $ (*)

$ E\infty=\int_{-\infty}^\infty |2tu(t)|dt $ (*)

$ E\infty=\int_{0}^\infty 2tdt $ (*)

$ E\infty=t^2|_{0}^{\infty} $

$ E\infty= \infty-0 $

$ E\infty=\infty $


Compute $ P\infty $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T |x(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T |\sqrt(2t)u(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T|2tu(t)|dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{0}^T2tdt $

$ P\infty=\lim_{T \to \infty}\frac{|t^2|_{0}^{T}}{2*T} $ (*)

$ P\infty=\lim_{T \to \infty}\frac{T^2-0}{2*T} $

$ P\infty=\lim_{T \to \infty}\frac{T}{2} $

$ P\infty=\infty $

  • It would be better not to use the start symbol to denote multiplication in this context. The star symbol in electrical engineering is usually denoting convolution.
  • *This is probably not the best way to order these steps, but it worked out at the end.
  • *You should not have the absolute values at this point.

Solution 2

$ E_\infty=\int_{-\infty}^\infty |x(t)|^2d=\int_{-\infty}^\infty |\sqrt{2t}u(t)|^2dt =\int_{0}^\infty | \sqrt{2t}|^2dt =\int_{0}^\infty 2tdt= \infty $

$ P\infty=\lim_{T \to \infty}\frac{1}{2T}\int_{-T}^T |x(t)|^2dt =\lim_{T \to \infty}\frac{1}{2T}\int_{-T}^T \left| \sqrt{2t} u(t) \right|^2dt =\lim_{T \to \infty}\frac{1}{2T}\int_{0}^T 2t dt= \lim_{T \to \infty}\frac{ t^2|_{0}^{T}}{2 T}=\lim_{T \to \infty}\frac{T^2-0}{2T}= \infty $

Short and sweet!


Back to CT signal energy page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang