Revision as of 17:05, 25 February 2015 by Rhea (Talk | contribs)


Problem

Calculate the energy $ E_\infty $ and the average power $ P_\infty $ for the CT signal $ x(t)=2t^2 $


Solution 1

$ E_{\infty} $

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt $

$ E_{\infty}=\int_{-\infty}^\infty |2t^2|^2\,dt $

$ E_{\infty}=2\int_{-\infty}^\infty t^4\,dt $

$ E_{\infty}=\frac{2}{5}t^5|_{-\infty}^\infty $

$ E_{\infty}=\infty $


$ P_{\infty} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{T}\int_{-T}^{T}t^4\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{5T}t^5|_{-T}^{T} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{5T}[T^5 - (-T^5)] $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{2T^5}{5T} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{2T^4}{5} $

$ P_{\infty}=\infty $

Both of your final answer are correct, but there are small mistakes (constant multipliers) in your computation.


Solution 2

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt =\infty $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\lim_{T \to \infty} \ \frac{2}{5T}t^5|_{-T}^{T}=\lim_{T \to \infty} \ \frac{2}{5T}[T^5 - (-T^5)] =\lim_{T \to \infty} \ \frac{4T^4}{5}=\infty $


Looks pretty good!


Solution 3

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt = 4 \frac{t^5}{5}=\infty. $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\frac{\infty}{\infty}=1. $


The energy computation looks good. But in the power computation you distributed the limit too early.


Back to CT signal energy page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood