(New page: <math>x(t)=2t^2</math> ---- <math>E_{\infty}</math> <math>E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt</math> <math>E_{\infty}=\int_{-\infty}^\infty |2t^2|^2\,dt</math> <math>E_{\inft...)
 
Line 1: Line 1:
 +
[[Category:energy]]
 +
[[Category:signal]]
 +
[[Category:ECE]]
 +
[[Category:ECE301]]
 +
[[Category:practice problem]]
 +
 +
 +
==Problem==
 +
Calculate the energy <math>E_\infty</math> and the average power <math>P_\infty</math> for the CT signal
 
<math>x(t)=2t^2</math>
 
<math>x(t)=2t^2</math>
 
----
 
----
 
+
==Solution 1==
 
<math>E_{\infty}</math>
 
<math>E_{\infty}</math>
  
Line 32: Line 41:
  
 
<math>P_{\infty}=\infty</math>
 
<math>P_{\infty}=\infty</math>
 +
 +
<span style="color:green"> Both of your final answer are correct, but there are small mistakes (constant multipliers) in your computation. </span>
 +
----
 +
==Solution 2==
 +
<math>E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt =\infty</math>
 +
 +
<math>P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\lim_{T \to \infty} \ \frac{2}{5T}t^5|_{-T}^{T}=\lim_{T \to \infty} \ \frac{2}{5T}[T^5 - (-T^5)] =\lim_{T \to \infty} \ \frac{4T^4}{5}=\infty</math>
 +
 +
 +
<span style="color:green"> Looks pretty good!</span>
 +
----
 +
==Solution 3==
 +
<math>E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt = 4 \frac{t^5}{5}=\infty.</math>
 +
 +
<math>P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\frac{\infty}{\infty}=1.</math>
 +
 +
 +
<span style="color:red"> The energy computation looks good. But in the power computation you distributed the limit too early. </span>
 +
----
 +
[[Signal_energy_CT|Back to CT signal energy page]]

Revision as of 17:05, 25 February 2015


Problem

Calculate the energy $ E_\infty $ and the average power $ P_\infty $ for the CT signal $ x(t)=2t^2 $


Solution 1

$ E_{\infty} $

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt $

$ E_{\infty}=\int_{-\infty}^\infty |2t^2|^2\,dt $

$ E_{\infty}=2\int_{-\infty}^\infty t^4\,dt $

$ E_{\infty}=\frac{2}{5}t^5|_{-\infty}^\infty $

$ E_{\infty}=\infty $


$ P_{\infty} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{T}\int_{-T}^{T}t^4\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{5T}t^5|_{-T}^{T} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{5T}[T^5 - (-T^5)] $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{2T^5}{5T} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{2T^4}{5} $

$ P_{\infty}=\infty $

Both of your final answer are correct, but there are small mistakes (constant multipliers) in your computation.


Solution 2

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt =\infty $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\lim_{T \to \infty} \ \frac{2}{5T}t^5|_{-T}^{T}=\lim_{T \to \infty} \ \frac{2}{5T}[T^5 - (-T^5)] =\lim_{T \to \infty} \ \frac{4T^4}{5}=\infty $


Looks pretty good!


Solution 3

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt = 4 \frac{t^5}{5}=\infty. $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\frac{\infty}{\infty}=1. $


The energy computation looks good. But in the power computation you distributed the limit too early.


Back to CT signal energy page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett