(New page: <math>x(t)=2t^2</math> ---- <math>E_{\infty}</math> <math>E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt</math> <math>E_{\infty}=\int_{-\infty}^\infty |2t^2|^2\,dt</math> <math>E_{\inft...)
 
Line 1: Line 1:
 +
[[Category:energy]]
 +
[[Category:signal]]
 +
[[Category:ECE]]
 +
[[Category:ECE301]]
 +
[[Category:practice problem]]
 +
 +
 +
==Problem==
 +
Calculate the energy <math>E_\infty</math> and the average power <math>P_\infty</math> for the CT signal
 
<math>x(t)=2t^2</math>
 
<math>x(t)=2t^2</math>
 
----
 
----
 
+
==Solution 1==
 
<math>E_{\infty}</math>
 
<math>E_{\infty}</math>
  
Line 32: Line 41:
  
 
<math>P_{\infty}=\infty</math>
 
<math>P_{\infty}=\infty</math>
 +
 +
<span style="color:green"> Both of your final answer are correct, but there are small mistakes (constant multipliers) in your computation. </span>
 +
----
 +
==Solution 2==
 +
<math>E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt =\infty</math>
 +
 +
<math>P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\lim_{T \to \infty} \ \frac{2}{5T}t^5|_{-T}^{T}=\lim_{T \to \infty} \ \frac{2}{5T}[T^5 - (-T^5)] =\lim_{T \to \infty} \ \frac{4T^4}{5}=\infty</math>
 +
 +
 +
<span style="color:green"> Looks pretty good!</span>
 +
----
 +
==Solution 3==
 +
<math>E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt = 4 \frac{t^5}{5}=\infty.</math>
 +
 +
<math>P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\frac{\infty}{\infty}=1.</math>
 +
 +
 +
<span style="color:red"> The energy computation looks good. But in the power computation you distributed the limit too early. </span>
 +
----
 +
[[Signal_energy_CT|Back to CT signal energy page]]

Revision as of 17:05, 25 February 2015


Problem

Calculate the energy $ E_\infty $ and the average power $ P_\infty $ for the CT signal $ x(t)=2t^2 $


Solution 1

$ E_{\infty} $

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt $

$ E_{\infty}=\int_{-\infty}^\infty |2t^2|^2\,dt $

$ E_{\infty}=2\int_{-\infty}^\infty t^4\,dt $

$ E_{\infty}=\frac{2}{5}t^5|_{-\infty}^\infty $

$ E_{\infty}=\infty $


$ P_{\infty} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{T}\int_{-T}^{T}t^4\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{5T}t^5|_{-T}^{T} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{5T}[T^5 - (-T^5)] $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{2T^5}{5T} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{2T^4}{5} $

$ P_{\infty}=\infty $

Both of your final answer are correct, but there are small mistakes (constant multipliers) in your computation.


Solution 2

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt =\infty $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\lim_{T \to \infty} \ \frac{2}{5T}t^5|_{-T}^{T}=\lim_{T \to \infty} \ \frac{2}{5T}[T^5 - (-T^5)] =\lim_{T \to \infty} \ \frac{4T^4}{5}=\infty $


Looks pretty good!


Solution 3

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt = 4 \frac{t^5}{5}=\infty. $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\frac{\infty}{\infty}=1. $


The energy computation looks good. But in the power computation you distributed the limit too early.


Back to CT signal energy page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang