(New page: <math>x(t)=tu(t)</math> <math>E_\infty = \int_{-\infty}^\infty |x(t)|^2\,dt)</math>)
 
Line 1: Line 1:
 
<math>x(t)=tu(t)</math>
 
<math>x(t)=tu(t)</math>
  
<math>E_\infty = \int_{-\infty}^\infty |x(t)|^2\,dt)</math>
+
<math>E_\infty = \int_{-\infty}^\infty |tu(t)|^2\,dt)</math>
 +
 
 +
<math>E_\infty = \int_{0}^\infty t^2\,dt)</math>
 +
 
 +
<math>E_\infty  =\frac{t^3}{3}\bigg]_0^\infty)</math>
 +
 
 +
<math>E_\infty  =\infty-0 = \infty</math>
 +
 
 +
<math>P_\infty = lim_{T \to \infty} \ \frac{1}{2T} \int_{-T}^T |tu(t)|^2\,dt</math>
 +
 
 +
<math>P_\infty = lim_{T \to \infty} \ \frac{1}{2T} \int_{0}^T t^2\,dt</math>
 +
 
 +
<math>P_\infty = lim_{T \to \infty} \ \frac{1}{2T} \frac{t^3}{3}\bigg]_0^\infty</math>

Revision as of 19:54, 21 June 2009

$ x(t)=tu(t) $

$ E_\infty = \int_{-\infty}^\infty |tu(t)|^2\,dt) $

$ E_\infty = \int_{0}^\infty t^2\,dt) $

$ E_\infty =\frac{t^3}{3}\bigg]_0^\infty) $

$ E_\infty =\infty-0 = \infty $

$ P_\infty = lim_{T \to \infty} \ \frac{1}{2T} \int_{-T}^T |tu(t)|^2\,dt $

$ P_\infty = lim_{T \to \infty} \ \frac{1}{2T} \int_{0}^T t^2\,dt $

$ P_\infty = lim_{T \to \infty} \ \frac{1}{2T} \frac{t^3}{3}\bigg]_0^\infty $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal