Line 146: Line 146:
  
  
Example 2: n is positive for both h[n] and x[n]
+
Example 2: n is negative for both h[n] and x[n]
  
 
<math>h[n] = u[-n]</math><br />
 
<math>h[n] = u[-n]</math><br />
Line 181: Line 181:
  
  
Example 3: n is positive for both h[n] and x[n]
+
Example 3: n is negative for x[n] and positive for h[n]
  
<math>h[n] = u[n]</math><br />
+
<math>h[n] = u[-n]</math><br />
  
<math>x[n] = 4^{-n}u[n]</math><br />
+
<math>x[n] = 3^{n}u[-n]</math><br />
  
<math>y[n] = x[n]*h[n]</math><br />
+
<math>y[n] = h[n]*x[n]</math><br />
  
 
<math>y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k]</math><br />
 
<math>y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k]</math><br />
  
<math>y[n] = \sum_{k=-\infty}^{\infty}4^{-k}u[k]u[n - k]</math><br />
+
<math>y[n] = \sum_{k=-\infty}^{\infty}3^{k}u[-k]u[-n + k]</math><br />
  
<math>u[k]=\begin{cases}  
+
<math>y[n] = \sum_{k=-\infty}^{0}3^{k}u[-n + k]</math><br />
1,  & \mbox{if }k \geq 0 \\
+
0,  & \mbox{if }k < 0
+
\end{cases}</math><br />
+
  
<math>y[n] = \sum_{k=0}^{\infty}4^{-k}u[n - k]</math><br />
+
since <math>u[-n + k] = 1</math><br />
  
<math>u[n-k]=\begin{cases}
+
<math>k \geq n</math><br />
1,  & \mbox{if }k \leq n \\
+
0,  & \mbox else
+
\end{cases}</math><br />
+
  
<math>y[n]=\begin{cases}  
+
<math>u[k]=\begin{cases}  
\sum_{k=0}^{n}4^{-k}, & \mbox{if }n \geq 0 \\
+
\sum_{k=n}^{0}3^{k}, & \mbox{if }n \leq 0 \\
0,  & \mbox{if }n < 0
+
0,  & \mbox{if }n > 0
 
\end{cases}</math><br />
 
\end{cases}</math><br />
  
<math>y[n]=\begin{cases}
+
Substitute <math>m = -k</math><br />
\frac{1-(\frac{1}{4})^{n+1}}{1-\frac{1}{4}}, & \mbox{if }n \geq 0 \\
+
0,  & \mbox else
+
\end{cases}</math><br />
+
  
<math>y[n]=\begin{cases}
+
<math>y[n] = u[-n]\sum_{m=-n}^{0}3^{-m}</math><br />
\frac{4-(\frac{1}{4})^{n}}{3}, & \mbox{if }n \geq 0 \\
+
0,  & \mbox else
+
\end{cases}</math><br />
+
  
<math>y[n] = \frac{4-(\frac{1}{4})^{n}}{3}u[n]</math><br />
+
<math>y[n] = u[-n]\sum_{m=0}^{-n}(\frac{1}{3})^{m}</math><br />
 +
 
 +
<math>y[n] = u[-n]\frac{1 - (\frac{1}{3})^{-n + 1}}{1-\frac{1}{3}}</math><br />
 +
 
 +
<math>y[n] = u[-n]\frac{3 - 3^{-n}}{2}</math><br />
  
 
[[ Main Page|Back to Main Page]]
 
[[ Main Page|Back to Main Page]]

Revision as of 22:30, 29 November 2018


CT and DT Convolution Examples

In this course, it is important to know how to do convolutions in both the CT and DT world. Sometimes there may be some confusion about how to deal with certain positive or negative input combinations. Here are some examples for how to deal with them.


CT Examples

Example 1: t is positive for both h(t) and x(t)


$ x(t) = u(t) $

$ h(t) = e^{-2t} u(t) $

$ y(t) = h(t)*x(t) $

$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(t - \tau) d\tau $

$ y(t) = \int_{0}^{\infty} e^{-2\tau} u(t - \tau) d\tau $

Since $ u(t - \tau) = 1 $

$ \tau \leq t $

$ y(t)=\begin{cases} \int_{0}^{t} e^{-2\tau}d\tau, & \mbox{if }t \geq 0 \\ 0, & \mbox else \end{cases} $

$ y(t)=\begin{cases} \frac{e^{-2t}-1}{-2} , & \mbox{if }t \geq 0 \\ 0, & \mbox else \end{cases} $

$ y(t)=\frac{u(t)}{2}(1-e^{-2t}) $


Example 2: t is negative for both h(t) and x(t)

$ x(t) = u(-t) $

$ h(t) = e^{3t} u(-t) $

$ y(t) = h(t)*x(t) $

$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{3\tau} u(-\tau)u(-(t - \tau)) d\tau $

$ y(t) = \int_{-\infty}^{0} e^{3\tau} u(-t + \tau) d\tau $


Since $ u(-t + \tau) = 1 $

$ \tau \geq t $

$ y(t)=\begin{cases} \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t \leq 0 \\ 0, & \mbox else \end{cases} $


$ y(t)=u(-t)\frac{e^{3\tau}}{3} |^t $

$ y(t)=\frac{u(-t)}{3}(1 - e^{3t}) $


Example 3: t is negative for x(t) and positive for h(t)

$ x(t) = u(-t) $

$ h(t) = e^{-2t} u(t) $

$ y(t) = h(t)*x(t) $

$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(-(t - \tau)) d\tau $

$ y(t) = \int_{0}^{\infty} e^{-2\tau} u(-t + \tau) d\tau $

Since $ u(-t + \tau) = 1 $

$ \tau \geq t $

$ y(t)=\begin{cases} \int_{t}^{\infty} e^{-2\tau}d\tau, & \mbox{if }t \geq 0 \\ \int_{0}^{\infty} e^{-2\tau}d\tau, & \mbox{if }t < 0 \end{cases} $


$ y(t)=\begin{cases} \frac{e^{-2t}}{2}, & \mbox{if }t \geq 0 \\ \frac{1}{2}, & \mbox{if }t < 0 \end{cases} $


DT Examples

Example 1: n is positive for both h[n] and x[n]

$ h[n] = u[n] $

$ x[n] = 4^{-n}u[n] $

$ y[n] = x[n]*h[n] $

$ y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k] $

$ y[n] = \sum_{k=-\infty}^{\infty}4^{-k}u[k]u[n - k] $

$ u[k]=\begin{cases} 1, & \mbox{if }k \geq 0 \\ 0, & \mbox{if }k < 0 \end{cases} $

$ y[n] = \sum_{k=0}^{\infty}4^{-k}u[n - k] $

$ u[n-k]=\begin{cases} 1, & \mbox{if }k \leq n \\ 0, & \mbox else \end{cases} $

$ y[n]=\begin{cases} \sum_{k=0}^{n}4^{-k}, & \mbox{if }n \geq 0 \\ 0, & \mbox{if }n < 0 \end{cases} $

$ y[n]=\begin{cases} \frac{1-(\frac{1}{4})^{n+1}}{1-\frac{1}{4}}, & \mbox{if }n \geq 0 \\ 0, & \mbox else \end{cases} $

$ y[n]=\begin{cases} \frac{4-(\frac{1}{4})^{n}}{3}, & \mbox{if }n \geq 0 \\ 0, & \mbox else \end{cases} $

$ y[n] = \frac{4-(\frac{1}{4})^{n}}{3}u[n] $


Example 2: n is negative for both h[n] and x[n]

$ h[n] = u[-n] $

$ x[n] = 3^{n}u[-n] $

$ y[n] = h[n]*x[n] $

$ y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k] $

$ y[n] = \sum_{k=-\infty}^{\infty}3^{k}u[-k]u[-n + k] $

$ y[n] = \sum_{k=-\infty}^{0}3^{k}u[-n + k] $

since $ u[-n + k] = 1 $

$ k \geq n $

$ u[k]=\begin{cases} \sum_{k=n}^{0}3^{k}, & \mbox{if }n \leq 0 \\ 0, & \mbox{if }n > 0 \end{cases} $

Substitute $ m = -k $

$ y[n] = u[-n]\sum_{m=-n}^{0}3^{-m} $

$ y[n] = u[-n]\sum_{m=0}^{-n}(\frac{1}{3})^{m} $

$ y[n] = u[-n]\frac{1 - (\frac{1}{3})^{-n + 1}}{1-\frac{1}{3}} $

$ y[n] = u[-n]\frac{3 - 3^{-n}}{2} $


Example 3: n is negative for x[n] and positive for h[n]

$ h[n] = u[-n] $

$ x[n] = 3^{n}u[-n] $

$ y[n] = h[n]*x[n] $

$ y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k] $

$ y[n] = \sum_{k=-\infty}^{\infty}3^{k}u[-k]u[-n + k] $

$ y[n] = \sum_{k=-\infty}^{0}3^{k}u[-n + k] $

since $ u[-n + k] = 1 $

$ k \geq n $

$ u[k]=\begin{cases} \sum_{k=n}^{0}3^{k}, & \mbox{if }n \leq 0 \\ 0, & \mbox{if }n > 0 \end{cases} $

Substitute $ m = -k $

$ y[n] = u[-n]\sum_{m=-n}^{0}3^{-m} $

$ y[n] = u[-n]\sum_{m=0}^{-n}(\frac{1}{3})^{m} $

$ y[n] = u[-n]\frac{1 - (\frac{1}{3})^{-n + 1}}{1-\frac{1}{3}} $

$ y[n] = u[-n]\frac{3 - 3^{-n}}{2} $

Back to Main Page

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison