Revision as of 11:13, 24 October 2010 by Ksoong (Talk | contribs)

A work in progress.

The Continuous Time Fourier Transform (CTFT)

The CTFT transforms an infinite length continuous signal in the time domain into an infinite length signal in the frequency domain. The formulae are:-

CTFT:

$ X(\omega) = \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt $

Inverse CTFT:

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \! X(\omega)e^{j \omega t} dw $

Example:

Let $ x(t) = \delta (t) $

$ \begin{align} X(\omega) &= \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\ &= \int_{-\infty}^{\infty} \! \delta (t)e^{-j \omega t} dt \\ &= 1\end{align} $

Therefore, CTFT of $ \delta (t) = 1 $

Properties

Linearity:

$ CTFT[x(t)] = X(\omega) $

Then $ CTFT[\alpha x1(t) + \beta x2(t)] = \alpha X1(\omega) + \beta X2(\omega) $

Time Reversal:

$ CTFT[x(t)] = X(\omega) $

Then $ CTFT[x(-t)] = X(-\omega) $

Time/Frequency Shift:

Time: $ CTFT[x(t-T)] = X(\omega)e^{-j \omega T} $

Frequency: $ CTFT[x(t)e^{j W t}] = X(\omega - W) $

Time Scaling:

$ CTFT[x(\alpha t)] = \frac{1}{|\alpha |} = X(\frac{\omega}{\alpha}) $

Conjugate Symmetry:

Assume x(t) is real,

$ CTFT[x(t)] = X(\omega) $

Then $ X(\omega) = X^*(\omega) $

Time Domain Multiplication/Convolution:

$ CTFT[x(t)\cdot y(t)] = \frac{1}{2\pi}X(\omega)*Y(w) $

$ CTFT[x(t)*y(t)] = X(\omega)Y(\omega) $


Back to ECE438, Fall 2010, Prof. Boutin

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett