m (The Continuous Time Fourier Transform (CTFT))
Line 12: Line 12:
 
'''Example:'''
 
'''Example:'''
  
Let <math>x(t) = <math>\delta (t)</math>
+
Let <math>x(t) = \delta (t)</math>
  
<math>\begin{align}X(\omega) = \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\
+
<math>
&= \int_{-\infty}^{\infty} \! rect(t)e^{-j \omega t} dt \\
+
\begin{align}
&= \int_{-\frac{1}{2}}^{\frac{1}{2}} \! rect(t)e^{-j \omega t} dt \\
+
X(\omega) &= \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\ &= \int_{-\infty}^{\infty} \! \delta (t)e^{-j \omega t} dt \\ &= 1\end{align}</math>
&= \int_{-\frac{1}{2}}^{\frac{1}{2}} \! e^{-j \omega t} dt\end{align}</math>
+
  
...because rect(t) has an area of 1 over the limits <math>[-\frac{1}{2}, \frac{1}{2}]</math>. So,
+
Therefore, CTFT of <math>\delta (t) = 1</math>
 
+
<math>\int_{-\frac{1}{2}}^{\frac{1}{2}} \! e^{-j \omega t} dt = \frac{1}{-j\omega}(e^{-j\frac{\omega}{2}} - e^{j\frac{\omega}{2}}) = \frac{1}{j\omega}(e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}) = \frac{2}{\omega}(\frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{2j}) = \frac{2}{\omega}sin(\frac{\omega}{2})</math>
+
 
+
Therefore,
+
 
+
<math>X(\omega) = \frac{2}{\omega}sin(\frac{\omega}{2}) \ \ or \ \ \frac{1}{\omega/2}sin(\frac{\omega}{2}) = sinc(\frac{\omega}{2\pi})</math>
+
  
 
== Properties ==
 
== Properties ==

Revision as of 06:46, 23 October 2010

A work in progress.

The Continuous Time Fourier Transform (CTFT)

CTFT:

$ X(\omega) = \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt $

Inverse CTFT:

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \! X(\omega)e^{j \omega t} dw $

Example:

Let $ x(t) = \delta (t) $

$ \begin{align} X(\omega) &= \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\ &= \int_{-\infty}^{\infty} \! \delta (t)e^{-j \omega t} dt \\ &= 1\end{align} $

Therefore, CTFT of $ \delta (t) = 1 $

Properties

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett