Line 7: Line 7:
 
may be expressed as <math>b_k = \left ( \frac{1}{T} \right ) \int \limits_T x \left ( t - t_0 \right ) e^{-j k w_0 t}\, dt</math>.
 
may be expressed as <math>b_k = \left ( \frac{1}{T} \right ) \int \limits_T x \left ( t - t_0 \right ) e^{-j k w_0 t}\, dt</math>.
  
Letting <math>\tao</math> = t - <math>t_0</math> in the new integral and noting that the new variable <math>\tao</math> will
+
Letting <math>\tau</math> = t - <math>t_0</math> in the new integral and noting that the new variable <math>\tau</math> will
  
 
also range over an interval of duration T, we obtain:
 
also range over an interval of duration T, we obtain:
  
<math>\qquad \left ( \frac{1}{T} \right ) \int \limits_T x \left ( \tao \right ) e^{-j k w_0 \left ( \tao + t_0 \right )}\, d\tao</math>
+
<math>\qquad \left ( \frac{1}{T} \right ) \int \limits_T x \left ( \tau \right ) e^{-j k w_0 \left ( \tau + t_0 \right )}\, d\tau</math>

Revision as of 02:48, 23 July 2009

CTFS Time Shifting Property

If x(t) has CTFS coefficients $ a_k $ and y(t) has CTFS coefficients $ b_k $,

then the Fourier series coefficients $ b_k $ of the resulting signal y(t) = x(t - $ t_0 $)

may be expressed as $ b_k = \left ( \frac{1}{T} \right ) \int \limits_T x \left ( t - t_0 \right ) e^{-j k w_0 t}\, dt $.

Letting $ \tau $ = t - $ t_0 $ in the new integral and noting that the new variable $ \tau $ will

also range over an interval of duration T, we obtain:

$ \qquad \left ( \frac{1}{T} \right ) \int \limits_T x \left ( \tau \right ) e^{-j k w_0 \left ( \tau + t_0 \right )}\, d\tau $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett